IKATAN KIMIA

IKATAN KIMIA

A.  Peranan Elektron Dalam Ikatan Kimia
Teori duplet dan oktet dari G.N. Lewis merupakan dasar ikatan kimia.
Lewis mengemukakan bahwa suatu atom berikatan dengan cara menggunakan bersama dua elektron atau lebih untuk mencapai konfigurasi elektron gas mulia (ns2np6)
Contoh:
TEORI INI MENDAPAT BEBERAPA KESULITAN, YAKNI :
1.
Pada senyawa BCl3 dan PCl5, atom boron dikelilingi 6 elektron, sedangkan atom fosfor dikelilingi 10 elektron.




2.
Menurut teori ini, jumlah ikatan kovalen yang dapat dibentuk suatu unsur tergant~u~g jumlah elektron tak berpasangan dalam unsur tersebut.
Contoh : 8O : 1s2 2s2 2p2 2px2 2py1 2pz1
Ada 2 elektron tunggal. sehingga oksigen dapat membentuk 2 ikatan (H-O-H; O=O).

akan tetapi:
                5B : 1s2 2s2 2px1
Sebenarnya hal ini dapat diterangkan bila kita ingat pada prinsip Hund, dimana cara pengisian elektron dalam orbital suatu sub kulit ialah bahwa elektron-elektron tidak membentuk pasangan elektron sebelum masing-masing orbital terisi dengan sebuah elektron.
Contoh : 5B : 1s2 2s2 2px1    (hibridisasi) 1s2 2s1 2px1 2py1

Tampak setelah terjadi hibridisasi untuk berikatan dengan atom B memerlukan tiga buah elektron, seperti BCl3

3.
Menurut teori di atas, unsur gas mulia tidak dapat membentuk ikatan karena di sekelilingnya telah terdapat
8 elektron. Tetapi saat ini sudah diketahui bahwa Xe dapat membentuk senyawa, misalnya XeF2 den XeO2.

Teori lain adalah teori ikatan valensi. Dalam teori ini ikatan antar atom terjadi dengan care saling bertindihan dari orbital-orbital atom. Elektron dalam orbital yang tumpang tindih harus mempunyai bilangan kuantum spin yang berlawanan.
BEBERAPA MACAM IKATAN KIMIA YANG TELAH DIKETAHUI, ANTARA LAIN :
A.
Ikatan antar atom
1. Ikatan ion = elektrovalen = heteropolar



2. Ikatan kovalen = homopolar



3. Ikatan kovalen koordinasi = semipolar



4. Ikatan logam

B.
Ikatan antar molekul
1. Ikatan hidrogen



2. Ikatan van der walls



B.  Ikatan Ion = Elektrovalen = Heteropolar
Ikatan ion biasanya terjadi antara atom-atom yang mudah melepaskan elektron (logam-logam golongan utama) dengan atom-atom yang mudah menerima elektron (terutama golongan VIA den VIIA). Makin besar perbedaan elektronegativitas antara atom-atom yang membentuk ikatan, maka ikatan yang terbentuk makin bersifat ionik.
PADA UMUMNYA UNSUR-UNSUR YANG MUDAH MEMBENTUK IKATAN ION ADALAH
- IA  VIIA atau VIA
- IIA   VIIA atau VIA
- Unsur transisi VIIA atau VIA
Contoh:
        Na              Na + e-
1s2 2s2 2p6 3s1          1s2 2s2 2p6 (konfigurasi Ne)
Atom Cl (VIIA) mudah menerima elektron sehingga elektron yang dilepaskan oleh atom Na akan ditangkap oleh atom Cl.
      Cl + e-                     Cl-
1s2 2s2 2p6 3s2 3p5                1s2 2s2 2p6 3s2 3p6 (konfigurasi Ar)
Antara ion-ion Na+ dan Cl- terjadi gaya tarik menarik elektrostatik, sehingga membentuk senyawa ion Na+Cl-.
Contoh lain : CaCl2 , MgBr2, BaO , FeS dan sebagainya.
SIFAT-SIFAT SENYAWA IONIK ANTARA LAIN

a. bersifat polar
b. larutannya dalam air menghantarkan arus listrik
c. titik lelehnya tinggi
d. lelehannya menghantarkan arus listrik
e. larut dalam pelarut-pelarut polar

C.  Ikatan Kovalen = Homopolar
Ikatan kovalen terjadi karena adanya pemakaian bersama elektron dari atom-atom yang membentuk ikatan. Pada umumnya ikatan kovalen terjadi antara atom-atom bukan logam yang mempunyai perbedaan elektronegativitas rendah atau nol. Seperti misalnya : H2, CH4, Cl2, N2, C6H6, HCl dan sebagainya.
IKATAN KOVALEN TERBAGI ATAS
1.
IKATAN KOVALEN POLAR
Atom-atom pembentuknya mempunyai gaya tarik yang tidak sama terhadap pasangan elektron
persekutuannya. Hal ini terjadi karena beda keelektronegatifan kedua atomnya. Elektron persekutuan akan
bergeser ke arah atom yang lebih elektronegatif akibatnya terjadi pemisahan kutub positif dan negatif.
 
 
Dalam senyawa HCl ini, Cl mempunyai keelektronegatifan yang lebih besar dari H. sehingga pasangan elektron lebih tertarik ke arah Cl, akibatnya H relatif lebih elektropositif sedangkan Cl relatif menjadi elektronegatif.
Pemisahan muatan ini menjadikan molekul itu bersifat polar dan memiliki "momen dipol" sebesar:
T = n . l
dimana :
T = momen dipol
n = kelebihan muatan pada masing-masing atom
l  = jarak antara kedua inti atom


2.
IKATAN KOVALEN NON POLAR
Titik muatan negatif elektron persekutuan berhimpit, sehingga pada molekul pembentukuya tidak terjadi momen dipol, dengan perkataan lain bahwa elektron persekutuan mendapat gaya tarik yang sama.
Contoh:

Kedua atom H mempunyai harga keelektronegatifan yang sama.


Karena arah tarikan simetris, maka titik muatan negatif elektron persekutuan berhimpit.
Contoh lain adalah senyawa CO2, O2, Br2 dan lain-lain



D.  Ikatan Kovalen Koordinasi = Semipolar
Ikatan kovalen koordinasi adalah ikatan yang terjadi apabila pasangan elektron yang dipakai bersama berasal dari salah satu atom yang membentuknya.
Jadi di sini terdapat satu atom pemberi pasangan elektron bebas (elektron sunyi), sedangkan atom lain sebagai
penerimanya.
SYARAT PEMBENTUKANNYA
1. Atom yang satu memiliki pasangan elektron bebas
2. Atom lainnya memiliki orbital kosong
Contoh:
- Ion hidronium (H3O+): H2O + H+ H3O+L
 
 
 
- Ion amonium : NH4+

E.  Ikatan Logam, Ikatan Hidrogen Dan Ikatan Van Der Walls
IKATAN LOGAM
Pada ikatan kovalen, elektron-elektron ikatan seolah-olah menjadi milik sepasang atom, sehingga tidak dapat bergerak bebas. Pada logam, elektron-elektron yang menyebabkan terjadinya ikatan di antara atom-atom logam tidak hanya menjadi milik sepasang atom saja, tetapi menjadi milik semua atom logam, sehingga elektron-elektron dapat bergerak bebas. Karena itulah maka logam-logam dapat menghantarkan arus listrik.

IKATAN HIDROGEN

Ikatan ini merupakan gaya tarik menarik antara atom H dengan atom lain yang mempunyai keelektronegatifan besar pada satu molekul dari senyawa yang sama.
Contoh:
- molekul H2O



- molekul HF

IKATAN VAN DER WALLS
Gas mempunyal sifat bentuk dan volumenya dapat berubah sesuai tempatnya. Jarak antara molekul-molekul gas relatif jauh dan gaya tarik menariknya sangat lemah. Pada penurunan suhu, fasa gas dapat berubah menjadi fasa cair atau padat. Pada keadaan ini jarak antara molekul-molekulnya menjadi lebih dekat dan gaya tarik menariknya relatif lebih kuat. Gaya tarik menarik antara molekul-molekul yang berdekatan ini disebut gaya Van der walls.

F.  Bentuk Molekul
Dalam bentuk molekul dikenal adanya teori ikatan valensi. Teori ini menyatakan bahwa ikatan antar atom terjadi dengan cara saling bertindihan dari orbital-orbital atom. Elektron dalam orbital yang tumpang tindih harus mempunyai bilangan kuantum spin yang berlawanan.
Pertindihan antara dua sub kulit s tidak kuat, oleh karena distribusi muatan yang berbentuk bola, oleh sebab itu pada umumnya ikatan s - s relatif lemah.
Sub kulit "p" dapat bertindih dengan sub kulit "s" atau sub kulit "p" lainnya, ikatannya relatif lebih kuat, hal ini dikarenakan sub kulit "p" terkonsentrasi pada arah tertentu.
Contoh:
a.
Molekul HF:
- konfigurasi atom H : 1s1



- konfigurasi atom F: 1s2 2s2 2Px2 2py2 2pz1




Tumpang tindih terjadi antara sub kulit 1s dari atom H dengan orbital 2pz dari aton, F. Pertindihan demikian disebut pertindihan sp.

b.
Molekul H2O:
- konfigurasi atom H : 1s1



- konfigurasi atom O: 1s2 2s2 2Px2 2py1 2pz1




Dalam atom O terdapat 2 elektron dalam keadaan yang tidak berpasangan (orbital 2py dan 2pz), masing-masing orbital ini akan bertindihan dengan orbital 1s dari 2 atom H. Kedudukan orbital-orbital p saling tegak lurus, diharapkan sudut ikatannya sebesar 90o, tetapi karena adanya pengaruh pasangan elektron 2px, maka kedua ikatan tersebut akan tertolak dan membentuk sebesar 104.5o.

c.
Molekul CH4
- konfigurasi atom H: 1s1



- konfigurasi atom C: 1s2 2s2 2Px1 2py1 2pz0




Untuk mengikat 4 atom H menjadi CH4, maka 1 elektron dari orbital 2s akan dipromosikan ke orbital 2pz, sehingga konfigurasi elektron atom C menjadi: 1s1 2s1 2px1 2py1 2pz1 . Orbital 2s mempunyai bentuk yang berbeda dengan ketiga orbital 2p, akan tetapi ternyata kedudukan keempat ikatan C-H dalam CH4 adalah sama. Hal ini terjadi karena pada saat orbital 2s, 2px, 2py dan 2pz menerima 4 elektron dari 4 atom H, keempat orbital ini berubah bentuknya sedemikian sehingga mempunyai kedudukan yang sama. Peristiwa ini disebut "hibridisasi". Karena perubahan yang terjadi adalah 1 orbital 2s dan 3 orbital 2p, maka disebut hibridisasi sp3. Bentuk molekul dari ikatan hibrida sp3 adalah tetrahedron.

 
BEBERAPA BENTUK GEOMETRI IKATAN, ANTARA LAIN :
Jenis ikatan
Jumlah ikatan maksimum
Bentuk geometrik

sp
2
Linier

sp2
3
Segitiga datar

sp3
4
Tetrahedron

dsp3
5
Trigonal bipiramid

sp2d ; dsp2
4
Segiempat datar

d2sp3 ; sp3d2
6
Oktahedron

STRUKTUR ATOM

STRUKTUR ATOM

A.  Pengertian Dasar
a. Partikel dasar : partikel-partikel pembentuk atom yang terdiri dari elektron, proton den neutron.
1. Proton
:
partikel pembentuk atom yang mempunyai massa sama dengan satu sma (amu) dan bermuatan +1.

2. Neutron
:
partikel pembentuk atom yang bermassa satu sma (amu) dan netral.

3. Elektron
:
partikel pembentuk atom yang tidak mempunyai massa dan bermuatan -1.

b. Nukleus : Inti atom yang bermuatan positif, terdiri dari proton den neutron.

c. Notasi unsur : zA A dengan X : tanda atom (unsur)

Z : nomor atom
= jumlah elektron (e)
= jumlah proton (p)


A : bilangan massa
= jumlah proton + neutron

Pada atom netral, berlaku: jumlah elektron = jumlah proton.
Contoh :
1. Tentukan jumlah elektron, proton den neutron dari unsur 2656 Fe !
Jawab :
Jumlah elektron = jumlah proton = nomor atom = 26
Jumlah neutron = bilangan massa - nomor atom = 56 - 26 = 30
2. Berikan notasi unsur X, jika diketahui jumlah neutron = 14 dan jumlah elektron = 13 !
Jawab :
Nomor atom = jumlah elektron = 13
Bilangan massa = jumlah proton + neutron = 13 + 14 = 27
Jadi notasi unsurnya: 13 27 X

d. Atom tak netral : atom yang bermuatan listrik karena kelebihan atau kekurangan elektron bila dibandingkan dengan atom netralnya.
Atom bermuatan positif bila kekurangan elektron, disebut kation.
Atom bermuatan negatif bila kelebihan elektron, disebut anion.
Contoh:
- Na+  : kation dengan kekurangan 1 elektron
- Mg2- : kation dengan kekurangan 2 elektron
- Cl-    : anion dengan kelebihan 1 elektron
- O2     : anion dengan kelebihan 2 elektron
e. Isotop : unsur yang nomor atomnya sama, tetapi berbeda bilangan massanya.
Contoh: Isotop oksigen: 816 O ; 817 O ; 818 O

f. Isobar : unsur yang bilangan massanya sama, tetapi berbeda nomor atomnya.
Contoh: 2759 CO dengan 2859 Ni

g. Isoton : unsur dengan jumlah neutron yang sama.
Contoh: 613 C dengan 714 N

h. Iso elektron: atom/ion dengan jumlah elektron yang sama.
Contoh: Na+ dengan Mg2+
                 K+ dengan Ar

B.  Model Atom
A.  MODEL ATOM JOHN DALTON
-
atom adalah bagian terkecil suatu unsur

-
atom tidak dapat diciptakan, dimusnahkan, terbagi lagi, atau diubah menjadi zat lain

-
atom-atom suatu unsur adalah same dalam segala hal, tetapi berbeda dengan atom-atom dari unsur lain

-
reaksi kimia merupakan proses penggabungan atau pemisahan atom dari unsur-unsur yang terlihat

Kelemahan teori atom Dalton: tidak dapat membedakan pengertian atom den molekul. Dan atom ternyata bukan partikel yang terkecil.
B.
MODEL ATOM J.J. THOMPSON
-
atom merupakan suatu bola bermuatan positif dan di dalamnya tersebar elektron-elektron seperti kismis

-
jumlah muatan positif sama dengan muatan negatif, sehingga atom bersifat netral


C. MODEL ATOM RUTHERFORD
-
atom terdiri dari inti atom yang sangat kecil dengan muatan positif yang massanya merupakan massa atom tersebut

-
elektron-elektron dalam atom bergerak mengelilingi inti tersebut

-
banyaknya elektron dalam atom sama dengan banyaknya proton dalam inti dan ini sesuai dengan nomor
atomnya


D. MODEL ATOM BOHR
-
elektron-elektron dalam mengelilingi inti berada pada tingkat-tingkat energi (kulit) tertentu tanpa
menyerap atau memancarkan energi

-
elektron dapat berpindah dari kulit luar ke kulit yang lebih dalam dengan memancarkan energi, atau
sebaliknya


C.  Bilangan-Bilangan Kuantum
Untuk menentukan kedudukan suatu elektron dalam atom, digunakan 4 bilangan kuantum.
1. Bilangan kuantum utama (n): mewujudkan lintasan elektron dalam atom.
n mempunyai harga 1, 2, 3, .....
- n = 1 sesuai dengan kulit K
- n = 2 sesuai dengan kulit L
- n = 3 sesuai dengan kulit M
- dan seterusnya
Tiap kulit atau setiap tingkat energi ditempati oleh sejumlah elektron. Jumlah elektron maksimmm yang dapat menempati tingkat energi itu harus memenuhi rumus Pauli = 2n2.
Contoh:
kulit ke-4 (n=4) dapat ditempati maksimum= 2 x 42 elektron = 32 elektron
2. Bilangan kuantum azimuth (l) : menunjukkan sub kulit dimana elektron itu bergerak sekaligus menunjukkan sub kulit yang merupakan penyusun suatu kulit.
Bilangan kuantum azimuth mempunyai harga dari 0 sampai dengan (n-1).
n = 1 ; l = 0 ; sesuai kulit K
n = 2 ; l = 0, 1 ; sesuai kulit L
n = 3 ; l = 0, 1, 2 ; sesuai kulit M
n = 4 ; l = 0, 1, 2, 3 ; sesuai kulit N
dan seterusnya
Sub kulit yang harganya berbeda-beda ini diberi nama khusus:
l = 0 ; sesuai sub kulit s (s = sharp)
l = 1 ; sesuai sub kulit p (p = principle)
l = 2 ; sesuai sub kulit d (d = diffuse)
l = 3 ; sesuai sub kulit f  (f = fundamental)
Bilangan kuantum magnetik (m): mewujudkan adanya satu atau beberapa tingkatan energi di dalam satu sub kulit. Bilangan kuantum magnetik (m) mempunyai harga (-l) sampai harga (+l).
Untuk:

l = 0 (sub kulit s), harga m =   0 (mempunyai 1 orbital)
l = 1 (sub kulit p), harga m = -1, O, +1 (mempunyai 3 orbital)
l = 2 (sub kulit d), harga m = -2, -1, O, +1, +2 (mempunyai 5 orbital)
l = 3 (sub kwit f) , harga m = -3, -2, O, +1, +2, +3 (mempunyai 7 orbital)
4. Bilangan kuantum spin (s): menunjukkan arah perputaran elektron pada sumbunya.
Dalam satu orbital, maksimum dapat beredar 2 elektron dan kedua elektron ini berputar melalui sumbu dengan arah yang berlawanan, dan masing-masing diberi harga spin +1/2 atau -1/2.
Pertanyaan:
Bagaimana menyatakan keempat bilangan kuantum dari elektron 3s1 ?
Jawab:
Keempat bilangan kuantum dari kedudukan elektron 3s1 dapat dinyatakan sebagai,
n= 3 ; l = 0 ; m = 0 ; s = +1/2 ; atau -1/2
D.  Konfigurasi Elektron
Dalam setiap atom telah tersedia orbital-orbital, akan tetapi belum tentu semua orbital ini terisi penuh. Bagaimanakah pengisian elektron dalam orbital-orbital tersebut ?
Pengisian elektron dalam orbital-orbital memenuhi beberapa peraturan. antara lain:
1. Prinsip Aufbau : elektron-elektron mulai mengisi orbital dengan tingkat energi terendah dan seterusnya.
Orbital yang memenuhi tingkat energi yang paling rendah adalah 1s dilanjutkan dengan 2s, 2p, 3s, 3p, dan seterusnya dan untuk mempermudah dibuat diagram sebagai berikut:


Contoh pengisian elektron-elektron dalam orbital beberapa unsur:
Atom H : mempunyai  1 elektron, konfigurasinya 1s1
Atom C : mempunyai  6 elektron, konfigurasinya 1s2 2s2 2p2
Atom K : mempunyai 19 elektron, konfigurasinya 1s2 2s2 2p6 3S2 3p6 4s1
2. Prinsip Pauli : tidak mungkin di dalam atom terdapat 2 elektron dengan keempat bilangan kuantum yang sama.
Hal ini berarti, bila ada dua elektron yang mempunyai bilangan kuantum utama, azimuth dan magnetik yang sama, maka bilangan kuantum spinnya harus berlawanan.
3. Prinsip Hund : cara pengisian elektron dalam orbital pada suatu sub kulit ialah bahwa elektron-elektron tidak membentuk pasangan elektron sebelum masing-masing orbital terisi dengan sebuah elektron.
Contoh:

- Atom C dengan nomor atom 6, berarti memiliki 6 elektron dan cara Pengisian orbitalnya adalah:


Berdasarkan prinsip Hund, maka 1 elektron dari lintasan 2s akan berpindah ke lintasan 2pz, sehingga sekarang ada 4 elektron yang tidak berpasangan. Oleh karena itu agar semua orbitalnya penuh, maka atom karbon berikatan dengan unsur yang dapat memberikan 4 elektron. Sehingga di alam terdapat senyawa CH4 atau CCl4, tetapi tidak terdapat senyawa CCl3 atau CCl5. 

REAKSI REDOKS DAN ELEKTROKIMIA

REAKSI REDOKS DAN ELEKTROKIMIA

A.  Oksidasi - Reduksi
OKSIDASI REDUKSI
Klasik


Oksidasi

Reaksi antara suatu zat dengan oksigen


Reduksi
Reaksi antara suatu zat dengan hidrogen




Modern
Oksidasi

- Kenaikan Bilangan Oksidasi
- Pelepasan Elektron

Reduksi

- Penurunan Bilangan Oksidasi
- Penangkapan Elektron


Oksidator

- Mengalami Reduksi
- Mengalami Penurunan Bilangan Oksidasi
- Memapu mengoksidasi
- Dapat menangkap elektron


Reduktor

- Mengalami oksidasi
- Mengalami kenaikan Bilangan Oksidasi
- Mampu mereduksi
- Dapat memberikan elektron


Auto Redoks

- Reaksi redoks di mana sebuah zat mengalami
reduksi sekaligus oksidasi





B.  Konsep Bilangan Oksidasi

Pengertian Bilangan Oksidasi :
Muatan listrik yang seakan-akan dimiliki oleh unsur dalam suatu senyawa atau ion.

HARGA BILANGAN OKSIDASI
1.
Unsur bebas Bialngan Oksidasi = 0


2.
Oksigen
Dalam Senyawa Bilangan Oksidasi = -2
kecuali
a. Dalam peroksida, Bilangan Oksidasi = -1
b. Dalam superoksida, Bilangan Oksida = -1/2
c. Dalam OF2, Bilangan Oksidasi = +2


3.
Hidrogen
Dalam senyawa, Bilangan Oksidasi = +1
Kecuali dalam hibrida = -1


4.
Unsur-unsur Golongan IA
Dalam Senyawa, Bilangan Oksidasi = +2


5.
Unsur-unsur Golongan IIA
Dalam senyawa, Bilangan Oksidasi = +2


6.
Bilangan Oksidasi molekul = 0


7.
Bilangan Oksidasi ion = muatan ion


8.
Unsur halogen
F
: 0, -1

Cl
: 0, -1, +1, +3, +5, +7

Br
: 0, -1, +1, +5, +7

I
: 0, -1, +1, +5, +7




C.  Langkah-Langkah Reaksi Redoks
LANGKAH-LANGKAH PENYETARAAN REAKSI REDOKS
1.
CARA BILANGAN OKSIDASI
a.
Tentukan mana reaksi oksidasi dan reduksinya.

b.
Tentukan penurunan Bilangan Oksidasi dari oksidator dan kenaikan Bilangan Oksidasi dari reduktor.

c.
Jumlah elektron yang diterima dan yang dilepaskan perlu disamakan dengan mengalikan terhadap suatu faktor.

d.
Samakan jumlah atom oksigen di kanan dan kiri reaksi terakhir jumlah atom hidrogen di sebelah kanan dan kiri reaksi.



2.
CARA SETENGAH REAKSI
a.
Tentukan mana reaksi oksidasi dan reduksi.

b.
Reaksi oksidasi dipisahkan daui reaksi reduksi

c.
Setarakan ruas kanan dan kiri untuk jumlah atom yang mengalami perubahan Bilangan Oksidasi untuk reaksi yang jumlah atom-atom kanan dan kiri sudah sama, setarakan muatan listriknya dengan menambahkan elektron.

d.
Untuk reaksi yang jumlah atom oksigen di kanan dan kiri belum sama setarakan kekurangan oksigen dengan menambahkan sejumlah H2O sesuai dengan jumlah kekurangannya.

e.
Setarakan atom H dengan menambah sejumlah ion H+ sebanyak kekurangannya.

f.
Setarakan muatan, listrik sebelah kanan dan kiri dengan menambahkan elektron pada ruas yang kekurangan muatan negatif atau kelebihan muatan positif.

g.
Samakan jumlah elektron kedua reaksi dengan mengalikan masing-masing dengan sebuah faktor.




D.  Penyetaraan Persamaan Reaksi Redoks
Tahapan:
Tentukan perubahan bilangan oksidasi.
Setarakan perubahan bilangan oksidasi.
Setarakan jumlah listrik ruas kiri dan kanan dengan :
H+          pada larutan bersifat asam
OH-          pada larutan bersifat basa
Tambahkan H2O untuk menyetarakan jumlah atom H.
Contoh:
MnO4- + Fe2+          Mn2+ + Fe3+ (suasana asam)
1.
MnO4- + Fe2+          Mn2+ + Fe3+


..+7...... +2.......        +2...... +3


.................                


........................+1

2.
Angka penyerta = 5
MnO4- + 5 Fe2+           Mn2+ + 5 Fe3+


3.
MnO4- + 5 Fe2+ + 8 H+          Mn2+ + 5 Fe3+


4.
MnO4- + 5 Fe2+ + 8 H+           Mn2+ + 5 Fe3+ + 4 H2O


E.  Elektrokimia
SEL ELEKTROKIMIA
1.
Sel Volta/Galvani
1. terjadi penubahan : energi kimia  energi listrik
2. anode = elektroda negatif (-)
3. katoda = elektroda positif (+)


2.
Sel Elektrolisis
1. terjadi perubahan : energi listrik  energi kimia
2. anode = elektroda positif (+)
3. katoda = elektroda neeatif (-)


F.  Sel Volta

KONSEP-KONSEP SEL VOLTA

Sel Volta
1.
Deret Volta/Nerst
a.
Li, K, Ba, Ca, Na, Mg, Al, Mn, Zn
Fe Ni, Sn, Pb, (H), Cu, Hg, Ag, Pt, Au


b.
Makin ke kanan, mudah direduksi sukar dioksidasi
Makin ke kiri, mudah dioksidasi sukar direduksi




2.
Prinsip
1. Anoda terjadi reaksi oksidasi ; Katoda terjadi reaksi reduksi
2. Arus elektron : anoda  katoda ; Arus listrik : katoda  anoda
3. Jembatan garam: menyetimbangkan ion-ion dalam larutan


MACAM SEL VOLTA
1.
Sel Kering atau Sel Leclance
= Katoda : Karbon
= Anoda :Zn
= Elektrolit : Campuran berupa pasta : MnO2 + NH4Cl + sedikit Air


2.
Sel Aki
= Katoda: PbO2
= Anoda : Pb
= Elektrolit: Larutan H2SO4
= Sel sekunder


3.
Sel Bahan Bakar
= Elektroda : Ni
= Elektrolit : Larutan KOH
= Bahan Bakar : H2 dan O2


4.
Baterai Ni - Cd
= Katoda : NiO2 dengan sedikit air
= Anoda : Cd


G.  Potensial Elektroda
POTENSIAL ELEKTRODA
1.
Pengertian
Merupakan ukuran terhadap besarnya kecenderungan suatu unsur untuk melepaskan atau mempertahankan elektron


2.
Elektroda Hidrogen
- E° H2 diukur pada 25° C, 1 atm dan {H+} = 1 molar
- E° H2 = 0.00 volt


3.
Elektroda Logam
- E° logam diukur terhadap E° H2
- Logam sebelah kiri H : E° elektroda < 0
- Logam sebelah kanan H : E° elektroda > 0


4.
Cara Menghitung Potensial Elektroda Sel
1. E° sel = E° red - E° oks
2. E sel = E° sel - RT/nF ln C
Pada 25° C :
E sel = E° sel - 0.059/n log C
Elektroda tergantung pada :
- Jenis Elektroda
- Suhu
- Konsentrasi ionnya



Catatan :
E° = potensial reduksi standar (volt)
R = tetapan gas - [ volt.coulomb/mol.°K] = 8.314
T = suhu mutlak (°K)
n = jumlah elektron
F = 96.500 coulomb
C = [bentuk oksidasi]/[bentuk reduksi]

H.  Korosi

1.
Prinsip
Proses Elektrokimia
Proses Oksidasi Logam


2.
Reaksi perkaratan besi
a.
Anoda: Fe(s) ® Fe2+ + 2e
Katoda: 2 H+ + 2 e- ® H2
2 H2O + O2 + 4e- ® 4OH-


b.
2H+ + 2 H2O + O2 + 3 Fe ® 3 Fe2+ + 4 OH- + H2
Fe(OH)2 oleh O2 di udara dioksidasi menjadi Fe2O3 . nH2O



3.
Faktor yang berpengaruh

1. Kelembaban udara
2. Elektrolit
3. Zat terlarut pembentuk asam (CO2, SO2)
4. Adanya O2
5. Lapisan pada permukaan logam
6. Letak logam dalam deret potensial reduksi


4.
Mencegah Korosi
1. Dicat
2. Dilapisi logam yang lebih mulia
3. Dilapisi logam yang lebih mudah teroksidasi
4. Menanam batang-batang logam yang lebih aktif dekat logam besi dan dihubungkan
5. Dicampur dengan logam lain


I.  KOROSI
1.
Prinsip
Proses Elektrokimia
Proses Oksidasi Logam


2.
Reaksi perkaratan besi
a.
Anoda: Fe(s) ® Fe2+ + 2e
Katoda: 2 H+ + 2 e- ® H2
2 H2O + O2 + 4e- ® 4OH-


b.
2H+ + 2 H2O + O2 + 3 Fe ® 3 Fe2+ + 4 OH- + H2
Fe(OH)2 oleh O2 di udara dioksidasi menjadi Fe2O3 . nH2O



3.
Faktor yang berpengaruh

1. Kelembaban udara
2. Elektrolit
3. Zat terlarut pembentuk asam (CO2, SO2)
4. Adanya O2
5. Lapisan pada permukaan logam
6. Letak logam dalam deret potensial reduksi


4.
Mencegah Korosi
1. Dicat
2. Dilapisi logam yang lebih mulia
3. Dilapisi logam yang lebih mudah teroksidasi
4. Menanam batang-batang logam yang lebih aktif dekat logam besi dan dihubungkan
5. Dicampur dengan logam lain



J.   Elektrolisis
1.  Katoda [elektroda -]

Terjadi reaksi reduksi


Jenis logam tidak diperhatikan, kecuali logam Alkali (IA) den Alkali tanah (IIA), Al dan Mn


Reaksi:
2 H+(aq) + 2e-  H2(g)
ion golongan IA/IIA  tidak direduksi; penggantinya air
2 H2O() + 2 e-  basa + H2(g)
ion-ion lain  direduksi

2.  Anoda [ektroda +]

Terjadi reaksi oksidasi


Jenis logam diperhatikan

a. Anoda : Pt atau C (elektroda inert)
reaksi : - 4OH-(aq)  2H2O() + O2(g) + 4e-
- gugus asam beroksigen tidak teroksidasi, diganti oleh 2 H2O()  asam + O2(g)
- golongan VIIA (halogen)  gas
b. Anoda bukan : Pt atau C
reaksi : bereaksi dengan anoda membentuk garam atau
senyawa lain.


K.  Hukum Faraday
PRINSIP PERHITUNGAN ELEKTROLISIS
1.
Hukum Faraday I
"Massa zat yang terbentuk pada masing-masing elektroda sebanding dengan kuat arus/arus listrik yang mengalir pada elektrolisis tersebut".
Rumus:
m = e . i . t / 96.500
q = i . t
m = massa zat yang dihasilkan (gram)
e = berat ekivalen = Ar/ Valens i= Mr/Valensi
i = kuat arus listrik (amper)
t = waktu (detik)
q = muatan listrik (coulomb)


2.
Hukum Faraday II
"Massa dari macam-macam zat yang diendapkan pada masing-masing elektroda (terbentuk pada masing-masing elektroda) oleh sejumlah arus listrik yang sama banyaknya akan sebanding dengan berat ekivalen masing-masing zat tersebut."
Rumus:
m1 : m2 = e1 : e2
m = massa zat (garam)
e = beret ekivalen = Ar/Valensi = Mr/Valensi


Contoh:
Pada elektrolisis larutan CuSO4 dengan elektroda inert, dialirkan listrik 10 amper selama 965 detik.
Hitunglah massa tembaga yang diendapkan pada katoda dan volume gas oksigen yang terbentuk di anoda pada (O°C, 1 atm), (Ar: Cu = 63.5 ; O = 16).
Jawab:
CuSO4 (aq)  Cu2+(aq) + SO42-(aq)
Katoda [elektroda - : reduksi] : Cu2+(aq) + 2e-  Cu(s)
Anoda [elektroda + : oksidasi]: 2 H2O(l)  O2(g) + 4 H+(aq) + 4 e-
a.
massa tembaga:
m = e . i . t/96.500 = (Ar/Valensi) x (10.965/96.500) = 63.5/2 x 9.650/96.500 = 31.25 x 0,1 = 3,125 gram


b.
m1 : m2 = e1 : e2
mCu : mO2 = eCu : eO2
3,125 : mO2 = 6.32/2 : 32/4
3,125 : mO2 = 31,25 : 8
mO2 = (3.125 x 8)/31.25 = 0.8 gram
mol O2 = 0.8/32 = 8/320 = 1/4 mol
volume O2 (0°C, 1 atm) = 1/40 x 22.4 = 0.56 liter

HASIL KALI KELARUTAN

HASIL KALI KELARUTAN

A.  Pengertian Dasar
Bila sejumlah garam AB yang sukar larut dimasukkan ke dalam air maka akan terjadi beberapa kemungkinan:
- Garam AB larut semua lalu jika ditambah garam AB lagi masih dapat
   larut            larutan tak jenuh.
- Garam AB larut semua lalu jika ditambah garam AB lagi tidak dapat
   larut           larutan jenuh.
- Garam AB larut sebagian            larutan kelewat jenuh.
Ksp = HKK = hasil perkalian [kation] dengan [anion] dari larutan jenuh suatu elektrolit yang sukar larut menurut kesetimbangan heterogen.
Kelarutan suatu elektrolit ialah banyaknya mol elektrolit yang sanggup melarut dalam tiap liter larutannya.
Contoh:
AgCl(s)             Ag+(aq) + Cl-(aq)
K =  [Ag+] [Cl-] / [AgCl]
K . [AgCl]  =  [Ag+][Cl-]
KspAgCl  =  [Ag+] [Cl-]
Bila Ksp AgCl = 10-10 , maka berarti larutan jenuh AgCl dalam air pada suhu 25oC, Mempunyai nilai [Ag+] [Cl-] = 10-10

B.  Kelarutan
1. Kelarutan zat AB dalam pelarut murni (air).

AnB(s)            nA+(aq) + Bn-(aq)
   s                     n.s         s
Ksp AnB = (n.s)n.s = nn.sn+1            s = n+i Ksp AnB/nn
dimana: s = sulobility = kelarutan
Kelarutan tergantung pada:
- suhu
- pH larutan
- ada tidaknya ion sejenis
2. Kelarutan zat AB dalam larutan yang mengandung ion sejenis
AB(s)   A+ (aq) + B- (aq)
  s           n.s         s
Larutan AX :
AX(aq)   A+(aq) + X-(aq)
   b            b         b
maka dari kedua persamaan reaksi di atas:

[A+] = s + b = b, karena nilai s cukup kecil bila dibandingkan terhadap nilai b sehingga dapat diabaikan.
[B-1] = s
Jadi :   Ksp AB = b . s
Contoh:
Bila diketahui Ksp AgCl = 10-10 ,berapa mol kelarutan (s) maksimum AgCl dalam 1 liter larutan 0.1 M NaCl ?
Jawab:
AgCl(s)   Ag+(aq) + Cl-(aq)
    s           s           s
NaCl(aq)   Na+(aq) + Cl-(aq)
Ksp AgCl = [Ag+] [Cl-] = s . 10-1
Maka s = 10-10/10-1 = 10-9 mol/liter
Dari contoh di atas. kita dapat menarik kesimpulan bahwa makin besar konsentrasi ion sojenis maka makin kecil kelarutan elektrolitnya.
a.
Pembentukan garam-garam
Contoh: kelarutan CaCO3(s) pada air yang berisi CO2 > daripada dalam air.
CaCO3(s) + H2O(l) + CO2(g)   Ca(HCO3)2(aq)
                                               larut

b.
Reaksi antara basa amfoter dengan basa kuat
Contoh: kelarutan Al(OH)3 dalam KOH > daripada kelarutan Al(OH)3 dalam air.
Al(OH)3(s) + KOH(aq)   KAlO2(aq) + 2 H2O(l)
                                    larut

c.
Pembentukan senyawa kompleks
Contoh: kelarutan AgCl(s) dalam NH4OH > daripada AgCl dalam air.
AgCl(s) + NH4OH(aq)   Ag(NH3)2Cl(aq) + H2O(l)
                                       larut



C.  Mengendapkan Elektrolit
Untuk suatu garam AB yang sukar larut berlaku ketentuan, jika:
- [A+] x [B-] < Ksp 
larutan tak jenuh; tidak terjadi pengendapan

- [A+] x [B-] = Ksp 
larutan tepat jenuh; larutan tepat mengendap

- [A+] x [B-] > Ksp 
larutan kelewat jenuh; di sini terjadi pengendapan zat

Contoh:
Apakah terjadi pengendapan CaCO3. jika ke dalam 1 liter 0.05 M Na2CO3 ditambahkan 1 liter 0.02 M CaCl2, dan diketahui harga Ksp untuk CaCO3 adalah 10-6.
Jawab:
Na2CO3(aq)   2 Na+(aq) + CO3- (aq)
[CO32-] = 1 . 0.05 / 1+1 = 0.025 M = 2.5 x 10-2 M
CaCl2(aq)   Ca2+(aq) + 2Cl-(aq)
[Ca2+] = 1 . 0.02 / 1+1 = 0.01 = 10-2 M
maka :   [Ca2+] x [CO32-] = 2.5 x 10-2 x 10-2 = 2.5 x 10-4
karena : [Ca2+] x [CO32-] > Ksp CaCO3, maka akan terjadi endapan CaCO3

SIFAT KOLIGATIF LARUTAN

SIFAT KOLIGATIF LARUTAN

A.  Sifat Koligatif Larutan Non Elektrolit
Sifat koligatif larutan adalah sifat larutan yang tidak tergantung pada macamnya zat terlarut tetapi semata-mata hanya ditentukan oleh banyaknya zat terlarut (konsentrasi zat terlarut).
Sifat koligatif meliputi:
1. Penurunan tekanan uap jenuh
2. Kenaikan titik didih
3. Penurunan titik beku
4. Tekanan osmotik
Banyaknya partikel dalam larutan ditentukan oleh konsentrasi larutan dan sifat Larutan itu sendiri. Jumlah partikel dalam larutan non elektrolit tidak sama dengan jumlah partikel dalam larutan elektrolit, walaupun konsentrasi keduanya sama. Hal ini dikarenakan larutan elektrolit terurai menjadi ion-ionnya, sedangkan larutan non elektrolit tidak terurai menjadi ion-ion. Dengan demikian sifat koligatif larutan dibedakan atas sifat koligatif larutan non elektrolit dan sifat koligatif larutan elektrolit.

B.  Penurunan Tekanan Uap Jenuh Dan Kenaikan Titik Didih
PENURUNAN TEKANAN UAP JENUH
Pada setiap suhu, zat cair selalu mempunyai tekanan tertentu. Tekanan ini adalah tekanan uap jenuhnya pada suhu tertentu. Penambahan suatu zat ke dalam zat cair menyebabkan penurunan tekanan uapnya. Hal ini disebabkan karena zat terlarut itu mengurangi bagian atau fraksi dari pelarut, sehingga kecepatan penguapanberkurang.
Menurut RAOULT:
p = po . XB
dimana:
p = tekanan uap jenuh larutan
po = tekanan uap jenuh pelarut murni
XB = fraksi mol pelarut
Karena XA + XB = 1, maka persamaan di atas dapat diperluas menjadi:
P = Po (1 - XA)
P = Po - Po . XA
Po - P = Po . XA
sehingga:
P = po . XA
dimana:

P = penunman tekanan uap jenuh pelarut
po = tekanan uap pelarut murni
XA = fraksi mol zat terlarut
Contoh:
Hitunglah penurunan tekanan uap jenuh air, bila 45 gram glukosa (Mr = 180) dilarutkan dalam 90 gram air !
Diketahui tekanan uap jenuh air murni pada 20oC adalah 18 mmHg.
Jawab:
mol glukosa = 45/180 = 0.25 mol
mol air = 90/18 = 5 mol
fraksi mol glukosa = 0.25/(0.25 + 5) = 0.048
Penurunan tekanan uap jenuh air:

P = Po. XA = 18 x 0.048 = 0.864 mmHg

KENAIKAN TITIK DIDIH
Adanya penurunan tekanan uap jenuh mengakibatkan titik didih larutan lebih tinggi dari titik didih pelarut murni.
Untuk larutan non elektrolit kenaikan titik didih dinyatakan dengan:
Tb = m . Kb
dimana:
Tb = kenaikan titik didih (oC)
m = molalitas larutan
Kb = tetapan kenaikan titik didih molal
Karena : m = (W/Mr) . (1000/p) ; (W menyatakan massa zat terlarut)
Maka kenaikan titik didih larutan dapat dinyatakan sebagai:
Tb = (W/Mr) . (1000/p) . Kb
Apabila pelarutnya air dan tekanan udara 1 atm, maka titik didih larutan dinyatakan sebagai:
Tb = (100 + Tb)oC
C.  Penurunan Titik Beku Dan Tekanan Osmotik
PENURUNAN TITIK BEKU
Untuk penurunan titik beku persamaannya dinyatakan sebagai :
Tf = m . Kf = W/Mr . 1000/p . Kf
dimana:
Tf = penurunan titik beku
m = molalitas larutan
Kf = tetapan penurunan titik beku molal
W = massa zat terlarut
Mr = massa molekul relatif zat terlarut
p = massa pelarut
Apabila pelarutnya air dan tekanan udara 1 atm, maka titik beku larutannya dinyatakan sebagai:
Tf = (O - Tf)oC

TEKANAN OSMOTIK

Tekanan osmotik adalah tekanan yang diberikan pada larutan yang dapat menghentikan perpindahan molekul-molekul pelarut ke dalam larutan melalui membran semi permeabel (proses osmosis).
Menurut VAN'T HOFF tekanan osmotik mengikuti hukum gas ideal:
PV = nRT
Karena tekanan osmotik =  , maka :
= n/V R T = C R T
dimana :
= tekanan osmotik (atmosfir)
C = konsentrasi larutan (mol/liter= M)
R = tetapan gas universal = 0.082 liter.atm/moloK
T = suhu mutlak (oK)
- Larutan yang mempunyai tekanan osmotik lebih rendah dari yang lain
  disebut larutan Hipotonis.
- Larutan yang mempunyai tekanan osmotik lebih tinggi dari yang lain
  disebut larutan Hipertonis.
- Larutan-larutan yang mempunyai tekanan osmotik sama disebut
   Isotonis.
D.  Sifat Koligatif Larutan Elektrolit
Seperti yang telah dijelaskan sebelumnya bahwa larutan elektrolit di dalam pelarutnya mempunyai kemampuan untuk mengion. Hal ini mengakibatkan larutan elektrolit mempunyai jumlah partikel yang lebih banyak daripada larutan non elektrolit pada konsentrasi yang sama
Contoh:
Larutan 0.5 molal glukosa dibandingkan dengan iarutan 0.5 molal garam dapur.
- Untuk larutan glukosa dalam air jumlah partikel (konsentrasinya) tetap, yaitu 0.5 molal.
- Untuk larutan garam dapur: NaCl(aq) --> Na+ (aq) + Cl- (aq) karena terurai menjadi 2 ion, maka konsentrasi partikelnya menjadi 2 kali semula = 1.0 molal.
Yang menjadi ukuran langsung dari keadaan (kemampuannya) untuk mengion adalah derajat ionisasi.
Besarnya derajat ionisasi ini dinyatakan sebagai:
= jumlah mol zat yang terionisasi/jumlah mol zat mula-mula
Untuk larutan elektrolit kuat, harga derajat ionisasinya mendekati 1, sedangkan untuk elektrolit lemah, harganya berada di antara 0 dan 1 (0 <  < 1).
Atas dasar kemampuan ini, maka larutan elektrolit mempunyai pengembangan di dalam perumusan sifat koligatifnya.
1. Untuk Kenaikan Titik Didih dinyatakan sebagai:
Tb = m . Kb [1 + (n-1)] = W/Mr . 1000/p . Kb [1+ (n-1)]
n menyatakan jumlah ion dari larutan elektrolitnya.
2. Untuk Penurunan Titik Beku dinyatakan sebagai:
Tf = m . Kf [1 + (n-1)] = W/Mr . 1000/p . Kf [1+ (n-1)]
3. Untuk Tekanan Osmotik dinyatakan sebagai:
= C R T [1+ (n-1)]
Contoh:
Hitunglah kenaikan titik didih dan penurunan titik beku dari larutan 5.85 gram garam dapur (Mr = 58.5) dalam 250 gram air ! (bagi air, Kb= 0.52 dan Kf= 1.86)
Jawab:
Larutan garam dapur, NaCl(aq) --> NaF+ (aq) + Cl- (aq)
Jumlah ion = n = 2.
Tb = 5.85/58.5 x 1000/250 x 0.52 [1+1(2-1)] = 0.208 x 2 = 0.416oC
Tf = 5.85/58.5 x 1000/250 x 0.86 [1+1(2-1)] = 0.744 x 2 = 1.488oC
Catatan:
Jika di dalam soal tidak diberi keterangan mengenai harga derajat ionisasi, tetapi kita mengetahui bahwa larutannya tergolong elektrolit kuat, maka harga derajat ionisasinya dianggap 1.

KIMIA TERAPAN DAN TERPAKAI

KIMIA TERAPAN DAN TERPAKAI

DEFINISI
Bagian dari ilmu kimia yang mempelajari reaksi-reaksi kimia yang dapat dimanfaatkan dalam proses industri untuk mengolah bahan asal menjadi bahan jadi atau bahan setengah jadi.
A.  Sabun
1. PENGERTIAN
Garam dari asam lemak dengan KOH/NaOH
 2. JENIS
O

Lunak : R  C  OK
O

Keras : R  C  ONa
 3. SIFAT
1. Mengandung alkali bebas  kualitas rendah
2. Dalam H2koloid
3. Dalam air sadah  kurang membuih
4.  PEMBUATAN
Lemak / Minyak + NaOH / KOH

B.  Detergen
1. PENGERTIAN
Garam Natrium dari Asam Sulfonat
2. SIFAT
Fisis
- Ujung non polar : R - O (hidrofob)
- Ujung polar : SO3Na (hidrofil)
Terhadap JASAD RENIK
- Rantai C-nya lurus : Biogradable
- Rantai C-nya bercabang : Unbiogradable
Kimiawi
- Dapat melarutkan lemak
- Tak dipengaruhi kesadahan air
3.  PEMBUATAN
ROH + H2SO4  ROSO3H + H2O
ROSO3H + NaOH  ROSO3Na + H2O

Bensin
1.  KOMPOSISI
- Iso oktan (= 2, 2, 4 - trimetil pentana)
- n heptan (menimbulkan knocking)
2.  BILANGAN OKTAN
Kadar iso oktan dalam bensin
3. KOMERSIAL
- Premium  bilangan oktan + 80
- Premix  bilangan oktan + 94
4. SENYAWA ANTI KNOCKING
Tetra etil lead (C2H5)4Pb
5. BENSIN CRACKING
Diperoleh melalui proses pemutusan Hidrokarbon
C12H26 > C6H14 + C6H12
           425 C 25 atm

Pupuk
JENIS PUPUK
1.
Pupuk Alam
- Kompos
- Pupuk Hijau
- Pupuk Kandang


2.
Pupuk Buatan
a.
Pupuk Nitrogen
- Za = (NH4)2SO4
- A.S.N = Amonium Sulfat Nitrat
- Urea = CO(NH2)2

b.
Pupuk Kalium  N.P.K

c.
Pupuk Pospor
- Enkel Superpospat
- Double Superpospat
- Triple Superpospat



Catatan :
Fungsi Pupuk : Mensuplai kebutuhan akan unsur-unsur tertentu
Air
H2O  merupakan pelarut universal
1.
Menurut Tempatnya
a. Air Tanah
b. Air Permukaan  Sungai
c. Air Hujan

2.
Menurut Kandungan Mineral
a.
Air Murni

b.
Air Tak Murni
- Air Minum
- Air mineral  Air Pelikan dan Air Sadah





Kesadahan
Air Sadah  mengandung Ca2+ dan Mg2+
1.
Jenis
a. Tetap  bila anionnya SO42- / Cl-
....pelunakannya diberi Na2CO3
b. Sementara  bila anionnya HCO3-
....pengendapannya  Dipanaskan dan Diberi Kapur

2.
Dampak
a. Memboroskan

b.Sabun Menimbulkan Baru Ginjal

c.Menimbulkan Kerak Pada Dasar Ketel



Zat Tambahan Pada Makanan
Zat-zat makanan yang diperlukan tubuh adalah

- karbohidrat
- lemak
- protein
- vitamin
- mineral
- air

Tetapi, selain zat-zat makanan tersebut di atas, di dalam makanan kita masih terdapat zat-zat lain yang pada umumnya tidak mempunyai nilai gizi.
Zat-zat ini disebut zat tambahan (additives) pada makanan, yaitu :
1.
Zat tambahan untuk membuat makanan menjadi lebih menarik kelihatannya, lebih sedap bau dan rasanya dan lebih awet bila disimpan.

2.
Zat tambahan yang bercampur dengan makanan pada waktu dalam proses penyediaan/pembuatan bahan makanan.

Zat tambahan im harus aman penggunaannya, yaitu tidak mengganggu kesehatan.

URAIAN BEBERAPA ZAT TAMBAHAN
1.
Zat warna: tujuan penambahan ialah membuat makanan lebih menarik.

Ada 2 macam zat warna:
a. Zat Warna Nabati,
yaitu yang berasal dari alam/tumbuh-tumbuhan. seperti warna hijau dari daun suji (daun pandan) dan warna kuning atau jingga dari kunir (kurkuma).

b. Zat Warna Sintetik,
yang umumnya dibuat dari ter batubara
Zat warna ini tidak boleh digunakan untuk makanan, karena beracun. Penelitian menunjukkan bahwa beberapa zat warna itu dapat menimbulkan penyakit kanker.




2.
Zat Penyedap (penguat rasa) : Tujuan penambahan ialah agar makanan lebih sedap rasa dan baunya.


3.
Zat Pengawet
Penggunaan gula dan garam sebagai pengawet sudah diketahui orang banyak.
Untuk makanan dalam kaleng umumnya digunakan zat pengawet lain, misalnya natrium benzoat. nipagin, sendawa dan asam sitrat. Ada kalanya digunakan juga antibiotik.
Minyak dan lemak jika tidak disimpan baik, lama kelamaan menjadi tengik. Peristiwa ini terjadi karena asam lemak
yang tidak jenuh dalam bahan ini teroksidasi.
Udara, cahaya dan kerja bakteri adalah penyebabnya. Untuk mencegah proses ini pada minyak atau lemak ditambahkan zat pengawet yang tergolong "antioksidan".
Contohnya:
- butil hidroksi anisol (BHA)
- butil hidroksi toluena (BHT)
Biasanya antioksidan digunakan bersama dengan asam sitrat atau asam askorbat (vitamin C) yang fungsinya untuk memperkuat kerja antioksidan itu.
Zat tambahan golongan lainnya yang secara tidak sengaja bercampur dengan makanan ialah bahan-bahan kimia yang digunakan dalam bidang pertanian dan peternakan, misalnya senyawa organoklor.
Karena itu kita harus mencuci bersih lebih dahulu sayuran dan buah-buahan yang akan kita makan untuk mencegah
keracunan oleh bahan kimia itu. Hormon-hormon yang sekarang sering diberikan kepada hewan potong untuk
mempercepat pertumbuhannya dapat juga merupakan zat pada makanan yang tidak kita kehendaki.


4.
Zat Pemanis
Gula Pasir dan gula jawa adalah pemanis alami yang sering dipakai sehari-hari. Pemanis sintetis sering digunakan dalam industri minuman seperti limun, sirup dan lain-lain. Penggunaan pemanis sintetis ini harus dibatasi karena kelebihan pemanis sintetis dalam minuman atau makanan akan menyebabkan penyakit.
Pemanis sintetis yang aman penggunaannya adalah gula stevita yaitu gula yang berasal dari daun Stevita rebaudina.


H.  Kertas
Bahan baku yang digunakan untuk membuat kertas ialah bahan-bahan yang mengandung banyak selulosa, seperti bambu, kayu, jerami, merang, dan lain-lain.
Pembuatan kertas dari bahan baku dapat dibagi menjadi dua tahap, yaitu:
1. Pembuatan pulp
2. Pembuatan kertas dari pulp
Pulp, di samping dapat digunakan untuk membuat kertas, dapat juga digunakan untuk membuat rayon (rayon adalah selulosa dalam bentuk serat-serat).
Ada 3 macam proses pembuatan pulp, yaitu:
1. Proses mekanis
2. Proses semi-kimia
3. Proses kimia
Pada proses mekanis
tidak digunakan bahan-bahan kimia. Bahan baku digiling dengan mesin sehingga selulosa terpisah dari zat-zat lain.


Pada proses semi-kimia
dilakukan seperti proses mekanis, tetapi dibantu dengan bahan kimia untuk lebih melunakkan, sehingga serat-serat selulosa mudah terpisah dan tidak rusak.


Pada proses kimia
bahan baku dimasak dengan bahan kimia tertentu untuk mengllilangkan zat lain yang tidak perlu dari serat-serat selulosa. Dengan proses ini, dapat diperoleh selulosa yang murni dan tidak rusak.


Ada 2 metoda pembuatan pulp dengan proses kimia, yaitu:
a.
Metoda proses basa

Termasuk di sini adalah:
- proses soda
- proses sulfat


b.
Metoda proses asam

Yang termasuk proses asam adalah proses sulfit


Proses Basa

Bahan baku yang telah dipotong kecil-kecil dengan mesin pemotong, dimasukkan dalam sebuah bejana yang disebut "digester."
Dalam larutan tersebut dimasukkan larutan pemasak:
- NaOH 7%, untuk proses soda
- NaOH, Na2S dan Na2CO3 untuk proses sulfat
Pemasakan ini berguna untuk memisahkan selulosa dari zat-zat yang lain.
Reaksi sebenarnya rumit sekali, tetapi secara sederhana dapat ditulis:
       Larutan pemasak
Kayu > pulp (selulosa) + senyawa-senyawa alkohol + senyawa-senyawa asam + merkaptan + zat-zat pengotor lainnya.
Kemudian campuran yang selesai dimasak tersebut dimasukkan ke dalam mesin pemisah pulp dan disaring. Pulp kasar dapat digunakan untuk membuat karton dan pulp halus yang warnanya masih coklat harus dikelantang (diputihkan/dipucatkan). Pemucatan dilakukan dengan menggunakan Kaporit atau Natrium hipoklorit. Perlu diperhatikan bahwa, bahan-bahan kimia yang sudah terpakai tidak dibuang, tetapi diolah kembali untuk dipakai lagi. Hal ini berarti menghemat biaya dan mencegah pencemaran lingkungan
Reaksi kimia yang penting dalam pengolahan kembali sisa larutan tersebut adalah :
Na2SO4 + 2 C > Na2S + 2 CO2
Na2CO3 + Ca(OH)2 > 2 NaOH + CaCO3
Proses Asam
Secara garis besar, proses sulfit dilakukan melalui tahap-tahap yang sama dengan proses basa. tetapi larutan yang digunakan adalah:
SO2, Ca(HSO3)2 dan Mg(HS03)2
Pembuatan Kertas

Pulp yang sudah siap, diolah dengan bahan-bahan penolong seperti perekat damar, kaolin, talk, gips, kalsium karbonat, tawas aluminium, kertas bekas, zat warna dan lain-lain, untuk kemudian diproses menjadi kertas, melalui mesin pembentuk lembaran kertas, mesin pengeras dan mesin pengering.
Catatan:
Zat-zat tersebut di atas dipakai dalam jumlah kecil sekali, dan bila berlebihan berbahaya bagi kesehatan.
Ada zat pemanis yang dapat menimbulkan kanker pada hewan-hewan percobaan, sehingga di beberapa negara dilarang.
Umumnya zat-zat tersebut di atas adalah sintetis.

KIMIA LINGKUNGAN

KIMIA LINGKUNGAN

DEFINISI
Bagian dari ilmu kimia yang mempelajari pengaruh dari bahan kimia terhadap lingkungan.
KETENTUAN
Kimia lingkungan mempelajari zat-zat kimia yang penggunaannya dapat menguntungkan dibidang kemajuan teknologi tetapi hasil-hasil sampingannya merugikan, serta cara pencegahannya.
MACAMNYA
1. Pencemaran udara
2. Pencemaran air
3. Pencemaran tanah
1.
Pencemaran udara


a.
Karbon monoksida (CO)
- tidak berwarna dan tidak barbau
- bersifat racun karena dapat berikatan dengan hemoglobin CO
  + Hb  COHb
- kemampuan Hb untuk mengikat CO jauh lebih besar dan O2,
  akibatnya darah kurang berfungsi sebagai pengangkut 02


b.
Belerangdioksida (SO2)
- berasal dari: gunung api, industri pulp dengan proses sulfit dan
  hasil pembakaran bahan bakar yang mengandung belerang (S)
- warna gas : coklat
- bersifat racun bagi pernafasan karena dapat mengeringkan
  udara


c.
Oksida nitrogen (NO dan NO2)
- pada pembakaran nitrogen, pembakaran bahan industri dan
  kendaraan bermotor
- di lingkungan yang lembab, oksida nitrogen dapat membentuk
  asam nitrat yang bersifat korosif


d.
Senyawa karbon
- dengan adanya penggunaan dari beberapa senyawa karbon di
   bidang pertanian, kesehatan dan peternakan, misalnya
   kelompok organoklor
- organoklor tersebut: insektisida, fungisida dan herbisida

2.
Pencemaran air


a.
Menurunnya pH air memperbesar sifat korosi air pada Fe dan dapat mengakibatkan terganggunya
kehidupan organisme air.


b.
Kenaikan suhu air mengakibatkan kelarutan O2 berkurang.


c.
Adanya pembusukan zat-zat organik yang mengubah warna, bau dan rasa air.
Syarat air sehat:
- tidak berbau dan berasa
- harga DO tinggi dan BOD rendah

3.
Pencemaran tanah


- Adanya bahan-bahan sintetik yang tidak dapat dihancurkan oleh
  mikroorganisme seperti plastik.
- Adanya buangan kimia yang dapat merusak tanah.

4.
Dampak polusi


JENIS POLUTAN
D A M P A K

CO
Racun sebab afinitasnya terhadap Hb besar

NO
Peningkatan radiasi ultra violet sebab NO menurunkan kadar O3 (filter ultra violet)

Freon
s d a

NO2
Racun paru

Minyak
Ikan mati sebab BOD naik

Limbah industri
Ikan mati sebab BOD naik

Pestisida
Racun sebab pestisida adalah organoklor

Pupuk
Tumbuhan mati kering sebab terjadi plasmolisis cairan sel


ZAT RADIOAKTIF

ZAT RADIOAKTIF

A.  Keradioaktifan Alam
Definisi : Bagian dari ilmu kimia yang mempelajari unsur-unsur yang bersifat radiokatif

MACAMNYA
KERADIOAKTIFAN ALAM
- Terjadi secara spontan

Misalnya: 92238 U   90224 Th + 24 He
1.
Jenis peluruhan
a. Radiasi Alfa
     - terdiri dari inti 24 He
    - merupakan partikel yang massif
    - kecepatan 0.1 C
    - di udara hanya berjalan beberapa cm sebelum menumbuk
      molekul udara
b. Radiasi Beta
     - terdiri dari elektron -10 e atau -10 beta
    - terjadi karena perubahan neutron 01 n  1 1 p + -10 e
    - di udara kering bergerak sejauh 300 cm
c. Radiasi Gamma
     - merupakan radiasi elektromagnetik yang berenergi tinggi
    - berasal dari inti
    - merupakan gejala spontan dari isotop radioaktif
d. Emisi Positron
     - terdiri dari partikel yang bermuatan positif dan hampir sama
      dengan elektron
    - terjadi dari proton yang berubah menjadi neutron 1 1 p  01
        n + +10 e
e. Emisi Neutron
     - tidak menghasilkan isotop unsur lain
 

2.
Kestabilan inti
- Pada umumnya unsur dengan nomor atom lebih besar dari 83
  adalah radioaktif.
- Kestabilan inti dipengaruhi oleh perbandingan antara neutron dan
  proton di dalam inti.
    * isotop dengan n/p di atas pita kestabilan menjadi stabil dengan
       memancarkan partikel beta.
    * isotop dengan n/p di bawah pita kestabilan menjadi stabil
       dengan menangkap elektron.
    * emisi positron terjadi pada inti ringan.
    * penangkapan elektron terjadi pada inti berat.
 

3.
Deret keradioaktifan

Deret radioaktif ialah suatu kumpulan unsur-unsur hasil peluruhan suatu radioaktif yang berakhir dengan terbentuknya unsur yang stabil.

a. Deret Uranium-Radium
    Dimulai dengan  92 238 U dan berakhir dengan  82 206 Pb
b. Deret Thorium
    Dimulai oleh peluruhan  90 232 Th dan berakhir dengan  82 208 Pb
c. Deret Aktinium
    Dimulai dengan peluruhan 92 235 U dan berakhir dengan  82 207 Pb
d. Deret Neptunium
    Dimulai dengan peluruhan  93 237 Np dan berakhir dengan  83 209
    Bi


B.  Keradioaktifan Buatan, Rumus Dan Ringkasan
KERADIOAKTIFAN BUATAN
Perubahan inti yang terjadi karena ditembak oleh partikel.
Prinsip penembakan:
Jumlah nomor atom sebelum penembakan = jumlah nomor atom setelah penembakan.
Jumlah nomor massa sebelum penembakan = jumlah nomor massa setelah penembakan.
Misalnya:  714 N +  24 He   817 O + 11 p

RUMUS
k = (2.3/t) log (No/Nt)
k = 0.693/t1/2
t = 3.32 . t1/2 . log No/Nt

k = tetapan laju peluruhan
t = waktu peluruhan
No = jumlah bahan radioaktif mula-mula
Nt = jumlah bahan radioaktif pada saat t
t1/2 = waktu paruh

RINGKASAN
1. Kestabilan inti: umumnya suatu isotop dikatakan tidak stabil bila:
a. n/p > (1-1.6)
b. e > 83
e = elektron
n = neutron
p = proton
2. Peluruhan radioaktif:
a. Nt = No . e-1
b. 2.303 log No/Nt = k . t
c. k . t1/2 = 0.693
d. (1/2)n = Nt/No
    t1/2 x n = t
No = jumiah zat radioaktif mula-mula (sebelum meluruh)
Nt = jumiah zat radioaktif sisa (setelah meluruh)
k = tetapan peluruhan
t = waktu peluruhan
t1/2 = waktu paruh
n = faktor peluruhan
Contoh:
1. Suatu unsur radioaktif mempunyai waktu paruh 4 jam. Dari sejumlah No unsur tersebut setelah 1 hari berapa yang masih tersisa ?
Jawab:
t1/2 = 4 jam ; t= 1 hari = 24 jam
t1/2 x n = t  n = t/t1/2 = 24/4 = 6
(1/2)n = Nt/No  (1/2)6 = Nt/No  Nt = 1/64 No
2. 400 gram suatu zat radioaktif setelah disimpan selama 72 tahun ternyata masih tersisa sebanyak 6.25 gram. Berapakah waktu paruh unsur radioaktif tersebut ?
Jawab:
No = 400 gram
Nt = 6.25 gram
t = 72 tahun
(1/2)n = Nt/No = 6.25/400 = 1/64 = (1/2)6
n = 6 (n adalah faktor peluruhan)
t = t1/2 x n  t1/2 = t/n = 72/6 = 12 tahun

TEORI ASAM BASA DAN STOKIOMETRI LARUTAN

TEORI ASAM BASA DAN STOKIOMETRI LARUTAN

A. Teori Asam Basa
1.  MENURUT ARRHENIUS

Asam ialah senyawa yang dalam larutannya dapat menghasilkan ion H+.
Basa ialah senyawa yang dalam larutannya dapat menghasilkan ion OH-.
Contoh:

1) HCl(aq)      H+(aq) + Cl-(aq)
2) NaOH(aq)   Na+(aq) + OH-(aq)
2.  MENURUT BRONSTED-LOWRY

Asam ialah proton donor, sedangkan basa adalah proton akseptor.
Contoh:

1) HAc(aq) + H2O(l)    H3O+(aq) + Ac-(aq)
    asam-1    basa-2        asam-2       basa-1
HAc dengan Ac- merupakan pasangan asam-basa konyugasi.
H3O+ dengan H2O merupakan pasangan asam-basa konyugasi.
2) H2O(l) + NH3(aq)    NH4+(aq) + OH-(aq)
    asam-1   basa-2          asam-2     basa-1
H2O dengan OH- merupakan pasangan asam-basa konyugasi.
NH4+ dengan NH3 merupakan pasangan asam-basa konyugasi.
Pada contoh di atas terlihat bahwa air dapat bersifat sebagai asam (proton donor) dan sebagai basa (proton akseptor). Zat atau ion atau spesi seperti ini bersifat ampiprotik (amfoter).
Stokiometri Larutan
Pada stoikiometri larutan, di antara zat-zat yang terlibat reaksi, sebagian atau seluruhnya berada dalam bentuk larutan.
1.
Stoikiometri dengan Hitungan Kimia Sederhana
Soal-soal yang menyangkut bagian ini dapat diselesaikan dengan cara hitungan kimia sederhana yang menyangkut hubungan kuantitas antara suatu komponen dengan komponen lain dalam suatu reaksi.
Langkah-langkah yang perlu dilakukan adalah:
a. menulis persamann reaksi
b. menyetarakan koefisien reaksi
c. memahami bahwa perbandingan koefisien reaksi menyatakan perbandingan mol
Karena zat yang terlibat dalam reaksi berada dalam bentuk larutan, maka mol larutan dapat dinyatakan sebagai:
n = V . M
dimana:
n = jumlah mol
V = volume (liter)
M = molaritas larutan
Contoh:
Hitunglah volume larutan 0.05 M HCl yang diperlukan untuk melarutkan 2.4 gram logam magnesium (Ar = 24).
Jawab:
Mg(s) + 2HCl(aq)  MgCl2(aq) + H2(g)
24 gram Mg = 2.4/24 = 0.1 mol
mol HCl = 2 x mol Mg = 0.2 mol
volume HCl = n/M = 0.2/0.25 = 0.8 liter


2.
Titrasi

Titrasi adalah cara penetapan kadar suatu larutan dengan menggunakan larutan standar yang sudah diketahui konsentrasinya. Motode ini banyak dilakukan di laboratorium. Beberapa jenis titrasi, yaitu:
1. titrasi asam-basa
2. titrasi redoks
3. titrasi pengendapan
Contoh:
1. Untuk menetralkan 50 mL larutan NaOH diperlukan 20 mL larutan 0.25 M HCl.
Tentukan kemolaran larutan NaOH !
Jawab:
NaOH(aq) + HCl(aq)  NaCl(aq) + H2O(l)
mol HCl = 20 x 0.25 = 5 m mol
Berdasarkan koefisien reaksi di atas.
mol NaOH = mol HCl = 5 m mol
M = n/V = 5 m mol/50mL = 0.1 M
2. Sebanyak 0.56 gram kalsium oksida tak murni dilarutkan ke dalam air. Larutan ini tepat dapat dinetralkan dengan 20 mL larutan 0.30 M HCl.Tentukan kemurnian kalsium oksida (Ar: O=16; Ca=56)!
Jawab:
CaO(s) + H2O(l)  Ca(OH)2(aq)
Ca(OH)2(aq) + 2 HCl(aq)  CaCl2(aq) + 2 H2O(l)
mol HCl = 20 x 0.30 = 6 m mol
mol Ca(OH)2 = mol CaO = 1/2 x mol HCl = 1/2 x 6 = 3 m mol
massa CaO = 3 x 56 = 168 mg = 0.168 gram
Kadar kemurnian CaO = 0.168/0.56 x 100% = 30%

LARUTAN

LARUTAN

A.  Pendahuluan
LARUTAN adalah campuran homogen dua zat atau lebih yang saling melarutkan dan masing-masing zat penyusunnya tidak dapat dibedakan lagi secara fisik.
Larutan terdiri atas zat terlarut dan pelarut.
Berdasarkan daya hantar listriknya (daya ionisasinya), larutan dibedakan dalam dua macam, yaitu larutan elektrolit dan larutan non elektrolit.

Larutan elektrolit adalah larutan yang dapat menghantarkan arus listrik.
Larutan ini dibedakan atas :
1.
ELEKTROLIT KUAT
Larutan elektrolit kuat adalah larutan yang mempunyai daya hantar listrik yang kuat, karena zat terlarutnya didalam pelarut (umumnya air), seluruhnya berubah menjadi ion-ion (alpha = 1).

Yang tergolong elektrolit kuat adalah:
a.
Asam-asam kuat, seperti : HCl, HCl03, H2SO4, HNO3 dan lain-lain.

b.
Basa-basa kuat, yaitu basa-basa golongan alkali dan alkali tanah, seperti: NaOH, KOH, Ca(OH)2, Ba(OH)2 dan lain-lain.

c.
Garam-garam yang mudah larut, seperti: NaCl, KI, Al2(SO4)3 dan lain-lain



2.
ELEKTROLIT LEMAH

Larutan elektrolit lemah adalah larutan yang daya hantar listriknya lemah dengan harga derajat ionisasi sebesar: O < alpha < 1.

Yang tergolong elektrolit lemah:

a. Asam-asam lemah, seperti : CH3COOH, HCN, H2CO3, H2S dan lain-lain
b. Basa-basa lemah seperti : NH4OH, Ni(OH)2 dan lain-lain
c. Garam-garam yang sukar larut, seperti : AgCl, CaCrO4, PbI2 dan lain-lain

Larutan non elektrolit adalah larutan yang tidak dapat menghantarkan arus listrik, karena zat terlarutnya di dalam pelarut tidak dapat menghasilkan ion-ion (tidak mengion).

Tergolong ke dalam jenis ini misalnya:

- Larutan urea
- Larutan sukrosa
- Larutan glukosa
- Larutan alkohol dan lain-lain
B.  Konsentrasi Larutan
Konsentrasi merupakan cara untuk menyatakan hubungan kuantitatif antara zat terlarut dan pelarut.
Menyatakan konsentrasi larutan ada beberapa macam, di antaranya:
1.
FRAKSI MOL
Fraksi mol adalah perbandingan antara jumiah mol suatu komponen dengan jumlah mol seluruh komponen yang terdapat dalam larutan.

Fraksi mol dilambangkan dengan X.

Contoh:
Suatu larutan terdiri dari 3 mol zat terlarut A den 7 mol zat terlarut B. maka:
XA = nA / (nA + nB) = 3 / (3 + 7) = 0.3
XB = nB /(nA + nB) = 7 / (3 + 7) = 0.7
* XA + XB = 1

2.
PERSEN BERAT
Persen berat menyatakan gram berat zat terlarut dalam 100 gram larutan.
Contoh:
Larutan gula 5% dalam air, artinya: dalam 100 gram larutan terdapat :
- gula = 5/100 x 100 = 5 gram
- air = 100 - 5 = 95 gram

3.
MOLALITAS (m)

Molalitas menyatakan mol zat terlarut dalam 1000 gram pelarut.

Contoh:
Hitunglah molalitas 4 gram NaOH (Mr = 40) dalam 500 gram air !
- molalitas NaOH = (4/40) / 500 gram air = (0.1 x 2 mol) / 1000 gram air = 0,2 m

4.
MOLARITAS (M)

Molaritas menyatakan jumlah mol zat terlarut dalam 1 liter larutan.
Contoh:
Berapakah molaritas 9.8 gram H2SO4 (Mr= 98) dalam 250 ml larutan ?
- molaritas H2SO4 = (9.8/98) mol / 0.25 liter = (0.1 x 4) mol / liter = 0.4 M

5.
NORMALITAS (N)

Normalitas menyatakan jumlah mol ekivalen zat terlarut dalam 1 liter larutan.
Untuk asam, 1 mol ekivalennya sebanding dengan 1 mol ion H+.
Untuk basa, 1 mol ekivalennya sebanding dengan 1 mol ion OH-.
Antara Normalitas dan Molaritas terdapat hubungan :

N = M x valensi

KESETIMBANGAN KIMIA

KESETIMBANGAN KIMIA


A.  Keadaan Kesetimbangan
Reaksi yang dapat berlangsung dalam dua arah disebut reaksi dapat balik. Apabila dalam suatu reaksi kimia, kecepatan reaksi ke kanan sama dengan kecepatan reaksi ke kiri maka, reaksi dikatakan dalam keadaan setimbang. Secara umum reaksi kesetimbangan dapat dinyatakan sebagai:
A  +  B     C  +  D

 ADA DUA MACAM SISTEM KESETIMBANGAN, YAITU :
1.
Kesetimbangan dalam sistem homogen
a.
Kesetimbangan dalam sistem gas-gas
Contoh: 2SO2(g) + O2(g)     2SO3(g)

b.
Kesetimbangan dalam sistem larutan-larutan
Contoh: NH4OH(aq)     NH4+(aq) + OH- (aq)



2.
Kesetimbangan dalam sistem heterogen
a.
Kesetimbangan dalam sistem padat gas
Contoh: CaCO3(s)     CaO(s) + CO2(g)

b.
Kesetimbangan sistem padat larutan
Contoh: BaSO4(s)     Ba2+(aq) + SO42- (aq)

c.
Kesetimbangan dalam sistem larutan padat gas
Contoh: Ca(HCO3)2(aq)      CaCO3(s) + H2O(l) + CO2(g)





B.  Hukum Kesetimbangan
Hukum Guldberg dan Wange:
Dalam keadaan kesetimbangan pada suhu tetap, maka hasil kali konsentrasi zat-zat hasil reaksi dibagi dengan hasil kali konsentrasi pereaksi yang sisa dimana masing-masing konsentrasi itu dipangkatkan dengan koefisien reaksinya adalah tetap.

Pernyataan tersebut juga dikenal sebagai hukum kesetimbangan.
Untuk reaksi kesetimbangan: a A + b B     c C + d D maka:
Kc = (C)c x (D)d / (A)a x (B)b


Kc adalah konstanta kesetimbangan yang harganya tetap selama suhu tetap.
BEBERAPA HAL YANG HARUS DIPERHATIKAN
-
Jika zat-zat terdapat dalam kesetimbangan berbentuk padat dan gas yang dimasukkan dalam, persamaan kesetimbangan hanya zat-zat yang berbentuk gas saja sebab konsentrasi zat padat adalah tetap den nilainya telah terhitung dalam harga Kc itu.
Contoh: C(s) + CO2(g)     2CO(g)
Kc = (CO)2 / (CO2)

-
Jika kesetimbangan antara zat padat dan larutan yang dimasukkan dalam perhitungan Kc hanya konsentrasi zat-zat yang larut saja.
Contoh: Zn(s) + Cu2+(aq)     Zn2+(aq) + Cu(s)
Kc = (Zn2+) / (CO2+)

-
Untuk kesetimbangan antara zat-zat dalam larutan jika pelarutnya tergolong salah satu reaktan atau hasil reaksinya maka konsentrasi dari pelarut itu tidak dimasukkan dalam perhitungan Kc.
Contoh: CH3COO-(aq) + H2O(l)     CH3COOH(aq) + OH-(aq)
Kc = (CH3COOH) x (OH-) / (CH3COO-)

 Contoh soal:
1. Satu mol AB direaksikan dengan satu mol CD menurut persamaan reaksi:
AB(g) + CD(g)     AD(g) + BC(g)
Setelah kesetimbangan tercapai ternyata 3/4 mol senyawa CD berubah menjadi AD dan BC. Kalau volume ruangan 1 liter, tentukan tetapan kesetimbangan untuk reaksi ini !
Jawab:
Perhatikan reaksi kesetimbangan di atas jika ternyata CD berubah (bereaksi) sebanyak 3/4 mol maka AB yang bereaksi juga 3/4 mol (karena koefsiennya sama).
Dalam keadaan kesetimbangan:
(AD) = (BC) = 3/4 mol/l
(AB) sisa = (CD) sisa = 1 - 3/4 = 1/4 n mol/l
Kc = [(AD) x (BC)]/[(AB) x (CD)] = [(3/4) x (3/4)]/[(1/4) x (1/4)] = 9
2. Jika tetapan kesetimbangan untuk reaksi:
A(g) + 2B(g)     4C(g)
sama dengan 0.25, maka berapakah besarnya tetapan kesetimbangan bagi reaksi:
2C(g)     1/2A(g) + B(g)
Jawab:
- Untuk reaksi pertama: K1 = (C)4/[(A) x (B)2] = 0.25
- Untuk reaksi kedua : K2 = [(A)1/2 x (B)]/(C)2
- Hubungan antara K1 dan K2 dapat dinyatakan sebagai:
   K1 = 1 / (K2)2    K2 = 2
C.  Pergeseran Kesetimbangan
Azas Le Chatelier menyatakan: Bila pada sistem kesetimbangan diadakan aksi, maka sistem akan mengadakan reaksi sedemikian rupa sehingga pengaruh aksi itu menjadi sekecil-kecilnya.
Perubahan dari keadaan kesetimbangan semula ke keadaan kesetimbangan yang baru akibat adanya aksi atau pengaruh dari luar itu dikenal dengan pergeseran kesetimbangan.
Bagi reaksi:
A  +  B       C  +  D

 KEMUNGKINAN TERJADINYA PERGESERAN
1.
Dari kiri ke kanan, berarti A bereaksi dengan B memhentuk C dan D, sehingga jumlah mol A dan Bherkurang, sedangkan C dan D bertambah.

2.
Dari kanan ke kiri, berarti C dan D bereaksi membentuk A dan B. sehingga jumlah mol C dan Dherkurang, sedangkan A dan B bertambah.

FAKTOR-FAKTOR YANG DAPAT MENGGESER LETAK KESETIMBANGAN ADALAH :
a. Perubahan konsentrasi salah satu zat
b. Perubahan volume atau tekanan
c. Perubahan suhu
1. PERUBAHAN KONSENTRASI SALAH SATU ZAT
Apabila dalam sistem kesetimbangan homogen, konsentrasi salah satu zat diperbesar, maka kesetimbangan akan bergeser ke arah yang berlawanan dari zat tersebut. Sebaliknya, jika konsentrasi salah satu zat diperkecil, maka kesetimbangan akan bergeser ke pihak zat tersebut.
Contoh: 2SO2(g) + O2(g)     2SO3(g)
- Bila pada sistem kesetimbangan ini ditambahkan gas SO2, maka kesetimbangan akan bergeser ke kanan.
- Bila pada sistem kesetimbangan ini dikurangi gas O2, maka kesetimbangan akan bergeser ke kiri.
2. PERUBAHAN VOLUME ATAU TEKANAN
Jika dalam suatu sistem kesetimbangan dilakukan aksi yang menyebabkan perubahan volume (bersamaan dengan perubahan tekanan), maka dalam sistem akan mengadakan berupa pergeseran kesetimbangan.
Jika tekanan diperbesar = volume diperkecil, kesetimbangan akan bergeser ke arah jumlah Koefisien Reaksi Kecil.
Jika tekanan diperkecil = volume diperbesar, kesetimbangan akan bergeser ke arah jumlah Koefisien reaksi besar.
Pada sistem kesetimbangan dimana jumlah koefisien reaksi sebelah kiri = jumlah koefisien sebelah kanan, maka perubahan tekanan/volume tidak menggeser letak kesetimbangan.

Contoh:
N2(g) + 3H2(g)     2NH3(g)

Koefisien reaksi di kanan = 2
Koefisien reaksi di kiri = 4
-
Bila pada sistem kesetimbangan tekanan diperbesar (= volume diperkecil), maka kesetimbangan akan
bergeser ke kanan.

-
Bila pada sistem kesetimbangan tekanan diperkecil (= volume diperbesar), maka kesetimbangan akan
bergeser ke kiri.


C. PERUBAHAN SUHU

Menurut Van't Hoff:
-
Bila pada sistem kesetimbangan subu dinaikkan, maka kesetimbangan reaksi akan bergeser ke arah yang membutuhkan kalor (ke arah reaksi endoterm).

-
Bila pada sistem kesetimbangan suhu diturunkan, maka kesetimbangan reaksi akan bergeser ke arah yang membebaskan kalor (ke arah reaksi eksoterm).
Contoh:
2NO(g) + O2(g)   2NO2(g) ; H = -216 kJ

-
Jika suhu dinaikkan, maka kesetimbangan akan bergeser ke kiri.

-
Jika suhu diturunkan, maka kesetimbangan akan bergeser ke kanan.



D.  Pengaruh Katalisator Terhadap Kesetimbangan Dan Hubungan Antara Harga Kc Dan Kp
PENGARUH KATALISATOR TERHADAP KESETIMBANGAN
Fungsi katalisator dalam reaksi kesetimbangan adalah mempercepat tercapainya kesetimbangan dan tidak merubah letak kesetimbangan (harga tetapan kesetimbangan Kc tetap), hal ini disebabkan katalisator mempercepat reaksi ke kanan dan ke kiri sama besar.
 HUBUNGAN ANTARA HARGA Kc DENGAN Kp

Untuk reaksi umum:

a A(g) + b B(g)     c C(g) + d D(g)

Harga tetapan kesetimbangan:
Kc = [(C)c . (D)d] / [(A)a . (B)b]
Kp = (PCc x PDd) / (PAa x PBb)
dimana: PA, PB, PC dan PD merupakan tekanan parsial masing-masing gas A, B. C dan D.

Secara matematis, hubungan antara Kc dan Kp dapat diturunkan sebagai:
Kp = Kc (RT) n
dimana n adalah selisih (jumlah koefisien gas kanan) dan (jumlah koefisien gas kiri).
Contoh:
Jika diketahui reaksi kesetimbangan:
CO2(g) + C(s)     2CO(g)

Pada suhu 300o C, harga Kp= 16. Hitunglah tekanan parsial CO2, jika tekanan total dalaun ruang 5 atm!
Jawab:
Misalkan tekanan parsial gas CO = x atm, maka tekanan parsial gas CO2 = (5 - x) atm.
Kp = (PCO)2 / PCO2 = x2 / (5 - x) = 16     x = 4
Jadi tekanan parsial gas CO2 = (5 - 4) = 1 atm

E.  Kesetimbangan Disosiasi
Disosiasi adalah penguraian suatu zat menjadi beberapa zat lain yang lebih sederhana.
Derajat disosiasi adalah perbandingan antara jumlah mol yang terurai dengan jumlah mol mula-mula.
Contoh:
2NH3(g)     N2(g) + 3H2(g)
besarnya nilai derajat disosiasi ():
 = mol NH3 yang terurai / mol NH3 mula-mula

Harga derajat disosiasi terletak antara 0 dan 1, jika:
a = 0 berarti tidak terjadi penguraian
a = 1 berarti terjadi penguraian sempurna
0 <  < 1 berarti disosiasi pada reaksi setimbang (disosiasi sebagian).
Contoh:
Dalam reaksi disosiasi N2O4 berdasarkan persamaan

      N2O4(g)    2NO2(g)

banyaknya mol N2O4 dan NO2 pada keadaan setimbang adalah sama.
Pada keadaan ini berapakah harga derajat disosiasinya ?
Jawab:
Misalkan mol N2O4 mula-mula = a mol
mol N2O4 yang terurai = a  mol   mol N2O4 sisa = a (1 - ) mol
mol NO2 yang terbentuk = 2 x mol N2O4 yang terurai = 2 a  mol
Pada keadaan setimbang:
mol N2O4 sisa = mol NO2 yang terbentuk
a(1 - ) = 2a    1 -  = 2     = 1/3

KECEPATAN REAKSI

KECEPATAN REAKSI


A.  KONSENTRASI DAN KECEPATAN REAKSI
Kecepatan reaksi adalah banyaknya mol/liter suatu zat yang dapat berubah menjadi zat lain dalam setiap satuan waktu.

Untuk reaksi: aA + bB    mM + nN
maka kecepatan reaksinya adalah:

1 (dA)
1 d(B)
1 d(M)
1 d(N)

V = -
------- = -
------- = +
-------- = +
----------


a dt
b dt
m dt
n dt

dimana:
- 1/a . d(A) /dt
= rA
= kecepatan reaksi zat A = pengurangan konsentrasi zat A per satuan wakru.

- 1/b . d(B) /dt
= rB
= kecepatan reaksi zat B = pengurangan konsentrasi zat B per satuan waktu.

- 1/m . d(M) /dt
= rM
= kecepatan reaksi zat M = penambahan konsentrasi zat M per satuan waktu.

- 1/n . d(N) /dt
= rN
= kecepatan reaksi zat N = penambahan konsentrasi zat N per satuan waktu.

Pada umumnya kecepatan reaksi akan besar bila konsentrasi pereaksi cukup besar. Dengan berkurangnya konsentrasi pereaksi sebagai akibat reaksi, maka akan berkurang pula kecepatannya.
Secara umum kecepatan reaksi dapat dirumuskan sebagai berikut:

V = k(A) x (B) y

dimana:
V = kecepatan reaksi
k = tetapan laju reaksi
x = orde reaksi terhadap zat A
y = orde reaksi terhadap zat B
(x + y) adalah orde reaksi keseluruhan
(A) dan (B) adalah konsentrasi zat pereaksi.



B.  Orde Reaksi
Orde reaksi adalah banyaknya faktor konsentrasi zat reaktan yang mempengaruhi kecepatan reaksi.
Penentuan orde reaksi tidak dapat diturunkan dari persamaan reaksi tetapi hanya dapat ditentukan berdasarkan percobaan.
Suatu reaksi yang diturunkan secara eksperimen dinyatakan dengan rumus kecepatan reaksi :
v = k (A) (B) 2

persamaan tersebut mengandung pengertian reaksi orde 1 terhadap zat A dan merupakan reaksi orde 2 terhadap zat B. Secara keselurahan reaksi tersebut adalah reaksi orde 3.
Contoh soal:
Dari reaksi 2NO(g) + Br2(g)    2NOBr(g)
dibuat percobaan dan diperoleh data sebagai berikut:
No.
(NO) mol/l
(Br2) mol/l
Kecepatan Reaksi
mol / 1 / detik

1.
0.1
0.1
12

2.
0.1
0.2
24

3.
0.1
0.3
36

4.
0.2
0.1
48

5.
0.3
0.1
108

Pertanyaan:
a. Tentukan orde reaksinya !
b. Tentukan harga k (tetapan laju reaksi) !
Jawab:
a.
Pertama-tama kita misalkan rumus kecepatan reaksinya adalah V = k(NO)x(Br2)y : jadi kita harus mencari nilai x den y.
Untuk menentukan nilai x maka kita ambil data dimana konsentrasi terhadap Br2 tidak berubah, yaitu data (1) dan (4).
Dari data ini terlihat konsentrasi NO naik 2 kali sedangkan kecepatan reaksinya naik 4 kali maka :
2x = 4    x = 2 (reaksi orde 2 terhadap NO)

Untuk menentukan nilai y maka kita ambil data dimana konsentrasi terhadap NO tidak berubah yaitu data (1) dan (2). Dari data ini terlihat konsentrasi Br2 naik 2 kali, sedangkan kecepatan reaksinya naik 2 kali, maka :
2y = 2    y = 1 (reaksi orde 1 terhadap Br2)

Jadi rumus kecepatan reaksinya : V = k(NO)2(Br2) (reaksi orde 3)

b.
Untuk menentukan nilai k cukup kita ambil salah satu data percobaan saja misalnya data (1), maka:
V = k(NO)2(Br2)
12 = k(0.1)2(0.1)
k = 12 x 103 mol-212det-1



C.  Teori Tumbukan Dan Teori Keadaan Transisi
Teori tumbukan didasarkan atas teori kinetik gas yang mengamati tentang bagaimana suatu reaksi kimia dapat terjadi. Menurut teori tersebut kecepatan reaksi antara dua jenis molekul A dan B sama dengan jumiah tumbukan yang terjadi per satuan waktu antara kedua jenis molekul tersebut. Jumlah tumbukan yang terjadi persatuan waktu sebanding dengan konsentrasi A dan konsentrasi B. Jadi makin besar konsentrasi A dan konsentrasi B akan semakin besar pula jumlah tumbukan yang terjadi.
TEORI TUMBUKAN INI TERNYATA MEMILIKI BEBERAPA KELEMAHAN, ANTARA LAIN :
-
tidak semua tumbukan menghasilkan reaksi sebab ada energi tertentu yang harus dilewati (disebut energi aktivasi = energi pengaktifan) untak dapat menghasilkan reaksi. Reaksi hanya akan terjadi bila energi tumbukannya lebih besar atau sama dengan energi pengaktifan (Ea).


-
molekul yang lebih rumit struktur ruangnya menghasilkan tumbukan yang tidak sama jumlahnya dibandingkan dengan molekul yang sederhana struktur ruangnya.

Teori tumbukan di atas diperbaiki oleh tcori keadaan transisi atau teori laju reaksi absolut. Dalam teori ini diandaikan bahwa ada suatu keadaan yang harus dilewati oleh molekul-molekul yang bereaksi dalam tujuannya menuju ke keadaan akhir (produk). Keadaan tersebut dinamakan keadaan transisi. Mekanisme reaksi keadaan transisi dapat ditulis sebagai berikut:
A + B    T* --> C + D
dimana:

- A dan B adalah molekul-molekul pereaksi
- T* adalah molekul dalam keadaan transisi
- C dan D adalah molekul-molekul hasil reaksi

SECARA DIAGRAM KEADAAN TRANSISI INI DAPAT DINYATAKAN SESUAI KURVA BERIKUT


Dari diagram terlibat bahwa energi pengaktifan (Ea) merupakan energi keadaan awal sampai dengan energi keadaan transisi. Hal tersebut berarti bahwa molekul-molekul pereaksi harus memiliki energi paling sedikit sebesar energi pengaktifan (Ea) agar dapat mencapai keadaan transisi (T*) dan kemudian menjadi hasil reaksi (C + D).
Catatan :
energi pengaktifan (= energi aktivasi) adalah jumlah energi minimum yang dibutuhkan oleh molekul-molekul pereaksi agar dapat melangsungkan reaksi.

D.  Tahap Menuju Kecepatan Reaksi
Dalam suatu reaksi kimia berlangsungnya suatu reaksi dari keadaan semula (awal) sampai keadaan akhir diperkirakan melalui beberapa tahap reaksi.
Contoh: 4 HBr(g) + O2(g)   2 H2O(g) + 2 Br2(g)
Dari persamaan reaksi di atas terlihat bahwa tiap 1 molekul O2 bereaksi dengan 4 molekul HBr. Suatu reaksi baru dapat berlangsung apabila ada tumbukan yang berhasil antara molekul-molekul yang bereaksi. Tumbukan sekaligus antara 4 molekul HBr dengan 1 molekul O2 kecil sekali kemungkinannya untuk berhasil. Tumbukan yang mungkin berhasil adalah tumbukan antara 2 molekul yaitu 1 molekul HBr dengan 1 molekul O2. Hal ini berarti reaksi di atas harus berlangsung dalam beberapa tahap dan diperkirakan tahap-tahapnya adalah :
Tahap 1:
HBr + O2
   HOOBr
(lambat)

Tahap 2:
HBr + HOOBr
   2HOBr
(cepat)

Tahap 3:
(HBr + HOBr
   H2O + Br2) x 2
(cepat)


------------------------------------------------------ +



4 HBr + O2
--> 2H2O + 2 Br2


Dari contoh di atas ternyata secara eksperimen kecepatan berlangsungnya reaksi tersebut ditentukan oleh kecepatan reaksi pembentukan HOOBr yaitu reaksi yang berlangsungnya paling lambat.
Rangkaian tahap-tahap reaksi dalam suatu reaksi disebut "mekanisme reaksi" dan kecepatan berlangsungnya reaksi keselurahan ditentukan oleh reaksi yang paling lambat dalam mekanisme reaksi. Oleh karena itu, tahap ini disebut tahap penentu kecepatan reaksi.

E.  FAKTOR-FAKTOR YANG MEMPENGARUHI KECEPATAN REAKSI

Beberapa faktor yang mempengaruhi kecepatan reaksi antara lain konsentrasi, sifat zat yang bereaksi, suhu dan katalisator.
1. KONSENTRASI
Dari berbagai percobaan menunjukkan bahwa makin besar konsentrasi zat-zat yang bereaksi makin cepat reaksinya berlangsung. Makin besar konsentrasi makin banyak zat-zat yang bereaksi sehingga makinbesar kemungkinan terjadinya tumbukan dengan demikian makin besar pula kemungkinan terjadinya reaksi.

2. SIFAT ZAT YANG BEREAKSI
Sifat mudah sukarnya suatu zat bereaksi akan menentukan kecepatan berlangsungnya reaksi.
Secara umum dinyatakan bahwa:
-
Reaksi antara senyawa ion umumnya berlangsung cepat.
Hal ini disebabkan oleh adanya gaya tarik menarik antara ion-ion yang muatannya berlawanan.

Contoh: Ca2+(aq) + CO32+(aq)   CaCO3(s)
Reaksi ini berlangsung dengan cepat.


-
Reaksi antara senyawa kovalen umumnya berlangsung lambat.
Hal ini disebabkan karena untuk berlangsungnya reaksi tersebut dibutuhkan energi untuk memutuskan ikatan-ikatan kovalen yang terdapat dalam molekul zat yang bereaksi.

Contoh: CH4(g) + Cl2(g)    CH3Cl(g) + HCl(g)
Reaksi ini berjalan lambat reaksinya dapat dipercepat apabila diberi energi misalnya cahaya matahari.

3. SUHU
Pada umumnya reaksi akan berlangsung lebih cepat bila suhu dinaikkan. Dengan menaikkan suhu maka energi kinetik molekul-molekul zat yang bereaksi akan bertambah sehingga akan lebih banyak molekul yang memiliki energi sama atau lebih besar dari Ea. Dengan demikian lebih banyak molekul yang dapat mencapai keadaan transisi atau dengan kata lain kecepatan reaksi menjadi lebih besar. Secara matematis hubungan antara nilai tetapan laju reaksi (k) terhadap suhu dinyatakan oleh formulasi ARRHENIUS:
k = A . e-E/RT

dimana:

k : tetapan laju reaksi
A : tetapan Arrhenius yang harganya khas untuk setiap reaksi
E : energi pengaktifan
R : tetapan gas universal = 0.0821.atm/moloK = 8.314 joule/moloK
T : suhu reaksi (oK)

4. KATALISATOR
Katalisator adalah zat yang ditambahkan ke dalam suatu reaksi dengan maksud memperbesar kecepatan reaksi. Katalis terkadang ikut terlibat dalam reaksi tetapi tidak mengalami perubahan kimiawi yang permanen, dengan kata lain pada akhir reaksi katalis akan dijumpai kembali dalam bentuk dan jumlah yang sama seperti sebelum reaksi.
Fungsi katalis adalah memperbesar kecepatan reaksinya (mempercepat reaksi) dengan jalan memperkecil energi pengaktifan suatu reaksi dan dibentuknya tahap-tahap reaksi yang baru. Dengan menurunnya energi pengaktifan maka pada suhu yang sama reaksi dapat berlangsung lebih cepat.

SISTEM KOLOID

SISTEM KOLOID


Sistem Dispers Dan Sistem Koloid
SISTEM DISPERS
A.
Dispersi kasar
(suspensi)
: partikel zat yang didispersikan berukuran lebih besar dari 100 nm.

B.
Dispersi koloid
: partikel zat yang didispersikan berukuran antara 1 nm - 100 nm.

C.
Dispersi molekuler
(larutan sejati)
: partikel zat yang didispersikan berukuran lebih kecil dari 1 nm.

Sistem koloid pada hakekatnya terdiri atas dua fase, yaitu fase terdispersi dan medium pendispersi.
Zat yang didispersikan disebut fase terdispersi sedangkan medium yang digunakan untuk mendispersikan disebut medium pendispersi.
 JENIS KOLOID

Sistem koloid digolongkan berdasarkan pada jenis fase terdispersi dan medium pendispersinya.

- koloid yang mengandung fase terdispersi padat disebut sol.
- koloid yang mengandung fase terdispersi cair disebut emulsi.
- koloid yang mengandung fase terdispersi gas disebut buih.

Sifat-Sifat Koloid
Sifat-sifat khas koloid meliputi :
a.
Efek Tyndall
Efek Tyndall adalah efek penghamburan cahaya oleh partikel koloid.

b.
Gerak Brown
Gerak Brown adalah gerak acak, gerak tidak beraturan dari partikel koloid.





Koloid Fe(OH)3 bermuatan positif karena permukaannya menyerap ion H+


Koloid As2S3 bermuatan negatif karena permukaannya menyerap ion S2-




c.
Adsorbsi
Beberapa partikel koloid mempunyai sifat adsorbsi (penyerapan) terhadap partikel atau ion atau senyawa yang lain.
Penyerapan pada permukaan ini disebut adsorbsi (harus dibedakan dari absorbsi yang artinya penyerapan sampai ke bawah permukaan).
Contoh :
(i) Koloid Fe(OH)3 bermuatan positif karena permukaannya menyerap ion H+.
(ii) Koloid As2S3 bermuatan negatit karena permukaannya menyerap ion S2.

d.
Koagulasi
Koagulasi adalah penggumpalan partikel koloid dan membentuk endapan. Dengan terjadinya koagulasi, berarti zat terdispersi tidak lagi membentuk koloid.
Koagulasi dapat terjadi secara fisik seperti pemanasan, pendinginan dan pengadukan atau secara kimia seperti penambahan elektrolit, pencampuran koloid yang berbeda muatan.

e.
Koloid Liofil dan Koloid Liofob
Koloid ini terjadi pada sol yaitu fase terdispersinya padatan dan medium pendispersinya cairan.
Koloid Liofil:
sistem koloid yang affinitas fase terdispersinya besar terhadap medium pendispersinya.
Contoh: sol kanji, agar-agar, lem, cat

Koloid Liofob:
sistem koloid yang affinitas fase terdispersinya kecil terhadap medium pendispersinya.
Contoh: sol belerang, sol emas.





C.  Elektroferisis Dan Dialisis
ELEKTROFERESIS
Elektroferesis adalah peristiwa pergerakan partikel koloid yang bermuatan ke salah satu elektroda.
Elektrotoresis dapat digunakan untuk mendeteksi muatan partikel koloid. Jika partikel koloid berkumpul di elektroda positif berarti koloid bermuatan negatif dan jika partikel koloid berkumpul di elektroda negatif berarti koloid bermuatan positif.
Prinsip elektroforesis digunakan untuk membersihkan asap dalam suatu industri dengan alat Cottrell.
 DIALISIS
Dialisis adalah proses pemurnian partikel koloid dari muatan-muatan yang menempel pada permukaannya.
Pada proses dialisis ini digunakan selaput semipermeabel.

D.  Pembuatan Koloid

1.  Cara Kondensasi
Cara kondensasi termasuk cara kimia.


kondensasi


Prinsip :
Partikel Molekular
-------------->
Partikel Koloid

Reaksi kimia untuk menghasilkan koloid meliputi :
a.
Reaksi Redoks
2 H2S(g) + SO2(aq)     3 S(s) + 2 H2O(l)

b.
Reaksi Hidrolisis
FeCl3(aq) + 3 H2O(l)     Fe(OH)3(s) + 3 HCl(aq)

c.
Reaksi Substitusi
2 H3AsO3(aq) + 3 H2S(g)    As2S3(s) + 6 H2O(l)

d.
Reaksi Penggaraman
Beberapa sol garam yang sukar larut seperti AgCl, AgBr, PbI2, BaSO4 dapat membentuk partikel koloid dengan pereaksi yang encer.
AgNO3(aq) (encer) + NaCl(aq) (encer)    AgCl(s) + NaNO3(aq) (encer)


Cara Dispersi

Prinsip :
Partikel Besar
---------------->
Partikel Koloid

Cara dispersi dapat dilakukan dengan cara mekanik atau cara kimia:
a.
Cara Mekanik
Cara ini dilakukan dari gumpalan partikel yang besar kemudian dihaluskan dengan cara penggerusan atau penggilingan.

b.
Cara Busur Bredig
Cara ini digunakan untak membuat sol-sol logam.

c.
Cara Peptisasi
Cara peptisasi adalah pembuatan koloid dari butir-butir kasar atau dari suatu endapan dengan bantuan suatu zat pemeptisasi (pemecah).
Contoh:
- Agar-agar dipeptisasi oleh air ; karet oleh bensin.
- Endapan NiS dipeptisasi oleh H2S ; endapan Al(OH)3 oleh AlCl3

TERMOKIMIA

TERMOKIMIA

A.  Reaksi Eksoterm Dan Endoterm

1.  Reaksi Eksoterm

Pada reaksi eksoterm terjadi perpindahan kalor dari sistem ke lingkungan atau pada reaksi tersebut dikeluarkan panas.
Pada reaksi eksoterm harga H = ( - )

Contoh : C(s) + O2(g)    CO2(g) + 393.5 kJ ; H = -393.5 kJ

2.  Reaksi Endoterm

Pada reaksi endoterm terjadi perpindahan kalor dari lingkungan ke sistem atau pada reaksi tersebut dibutuhkan panas.
Pada reaksi endoterm harga H = ( + )

Contoh : CaCO3(s)   CaO(s) + CO2(g) - 178.5 kJ ; H = +178.5 kJ


B.  Perubahan Entalpi

ntalpi = H = Kalor reaksi pada tekanan tetap = Qp
Perubahan entalpi adalah perubahan energi yang menyertai peristiwa perubahan kimia pada tekanan tetap.
a.
Pemutusan ikatan membutuhkan energi (= endoterm)
Contoh: H2    2H - a kJ ; H= +akJ

b.
Pembentukan ikatan memberikan energi (= eksoterm)
Contoh: 2H    H2 + a kJ ; H = -a kJ

Istilah yang digunakan pada perubahan entalpi :
1.
Entalpi Pembentakan Standar ( Hf ):
H untak membentuk 1 mol persenyawaan langsung dari unsur-unsurnya yang diukur pada 298 K dan tekanan 1 atm.
Contoh: H2(g) + 1/2 O2(g)    H20 (l) ; Hf = -285.85 kJ

2.
Entalpi Penguraian:
H dari penguraian 1 mol persenyawaan langsung menjadi unsur-unsurnya (= Kebalikan dari H pembentukan).
Contoh: H2O (l)    H2(g) + 1/2 O2(g) ; H = +285.85 kJ

3.
Entalpi Pembakaran Standar ( Hc ):
H untuk membakar 1 mol persenyawaan dengan O2 dari udara yang diukur pada 298 K dan tekanan 1 atm.
Contoh: CH4(g) + 2O2(g)    CO2(g) + 2H2O(l) ; Hc = -802 kJ

4.
Entalpi Reaksi:
H dari suatu persamaan reaksi di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan koefisien-koefisien persamaan reaksi bulat sederhana.
Contoh: 2Al + 3H2SO4    Al2(SO4)3 + 3H2 ; H = -1468 kJ

5.
Entalpi Netralisasi:
H yang dihasilkan (selalu eksoterm) pada reaksi penetralan asam atau basa.
Contoh: NaOH(aq) + HCl(aq)    NaCl(aq) + H2O(l) ; H = -890.4 kJ/mol

6.
Hukum Lavoisier-Laplace
"Jumlah kalor yang dilepaskan pada pembentukan 1 mol zat dari unsur-unsurya = jumlah kalor yang diperlukan untuk menguraikan zat tersebut menjadi unsur-unsur pembentuknya."
Artinya : Apabila reaksi dibalik maka tanda kalor yang terbentuk juga dibalik dari positif menjadi negatif atau sebaliknya
Contoh:
N2(g) + 3H2(g)    2NH3(g) ; H = - 112 kJ
2NH3(g)    N2(g) + 3H2(g) ; H = + 112 kJ



C.  Penentuan Perubahan Entalpi Dan Hukum Hess

PENENTUAN PERUBAHAN ENTALPI
Untuk menentukan perubahan entalpi pada suatu reaksi kimia biasanya digunakan alat seperti kalorimeter, termometer dan sebagainya yang mungkin lebih sensitif.
Perhitungan : H reaksi =  Hfo produk -  Hfo reaktan
 HUKUM HESS
"Jumlah panas yang dibutuhkan atau dilepaskan pada suatu reaksi kimia tidak tergantung pada jalannya reaksi tetapi ditentukan oleh keadaan awal dan akhir."
Contoh:
C(s) + O2(g)
   CO2(g)
; H = x kJ
   1 tahap

C(s) + 1/2 02(g)
   CO(g)
; H = y kJ
   2 tahap

CO(g) + 1/2 O2(g)
   CO2(g)
; H = z kJ


------------------------------------------------------------ +

C(s) + O2(g)
   CO2(g)
; H = y + z kJ


Menurut Hukum Hess : x = y + z


D.  Energi-Energi Dan Ikatan Kimia

Reaksi kimia merupakan proses pemutusan dan pembentukan ikatan. Proses ini selalu disertai perubahan energi. Energi yang dibutuhkan untuk memutuskan ikatan kimia, sehingga membentuk radikal-radikal bebas disebut energi ikatan. Untuk molekul kompleks, energi yang dibutuhkan untuk memecah molekul itu sehingga membentuk atom-atom bebas disebut energi atomisasi.
Harga energi atomisasi ini merupakan jumlah energi ikatan atom-atom dalam molekul tersebut. Untuk molekul kovalen yang terdiri dari dua atom seperti H2, 02, N2 atau HI yang mempunyai satu ikatan maka energi atomisasi sama dengan energi ikatan Energi atomisasi suatu senyawa dapat ditentukan dengan cara pertolongan entalpi pembentukan senyawa tersebut. Secara matematis hal tersebut dapat dijabarkan dengan persamaan :
H reaksi
=  energi pemutusan ikatan
-  energi pembentukan ikatan


=  energi ikatan di kiri
-  energi ikatan di kanan

Contoh:
Diketahui :
energi ikatan
C - H = 414,5 kJ/Mol
C = C = 612,4 kJ/mol
C - C = 346,9 kJ/mol
H - H = 436,8 kJ/mol

Ditanya:
H reaksi = C2H4(g) + H2(g)    C2H6(g)



H reaksi
= Jumlah energi pemutusan ikatan - Jumlah energi pembentukan ikatan


= (4(C-H) + (C=C) + (H-H)) - (6(C-H) + (C-C))
= ((C=C) + (H-H)) - (2(C-H) + (C-C))
= (612.4 + 436.8) - (2 x 414.5 + 346.9)
= - 126,7 kJ