Inti Analisis titrimetri atau analisa volumetri

Inti Analisis titrimetri atau analisa volumetri 

Analisis titrimetri atau analisa volumetri adalah analisa kuantitatif dengan
mereaksikan suatu zat yang dianalisis dengan larutan standar (standar) yang telah
diketahui konsentrasinya secara teliti, dan reaksi antara zat yang dianalisis dan
larutan standar tersebut berlangsung secara kuantitatif.
Analisa titrimetri merupakan satu bagian utama kimia analisis dan
perhitungannya berdasarkan hubungan stoikiometri sederhana dari reaksi-reaksi
kimia.
aA + tT  produk
dimana a molekul analit A, bereaksi dengan t molekul reagensia T. Reagensia T
disebut titran, ditambahkan sedikit-demi sedikit, biasanya dari dalam buret.
Larutan dalam buret bisa berupa larutan standar yang konsentrasinya diketahui
dengan cara standarisasi ataupun larutan dari zat yang akan ditentukan
konsentrasinya. Penambahan titran diteruskan sampai jumlah T yang secara
kimia setara atau ekuivalen dengan A, maka keadaan tersebut dikatakan telah
mencapai titik ekuivalensi atau disingkat TE dari titrasi itu. Namun kapan tepatnya
tercapai suatu titik ekuivalensi tidak dapat dilihat secara kasat mata. Untuk
mengetahui kapan penambahan titran itu harus dihentikan, digunakanlah suatu
zat yang disebut indikator yang dapat menunjukkan terjadinya kelebihan titran
dengan perubahan warna. Perubahan warna ini bisa tepat atau tidak tepat pada
titik ekuivalensi. Titik dalam titrasi pada saat indikator berubah warna disebut
titik akhir titrasi atau disingkat TA, idealnya adalah titik akhir titrasi sedekat
mungkin dengan titik ekuivalensi sehingga pemilihan indikator yang tepat merupakan salah satu aspek yang penting dalam analisis Volumetri (Titrimetri)
untuk mengimpitkan kedua titik tersebut.



Berdasarkan reaksi kimia yang berperan sebagai dasar dalam analisis titrimetri,
maka metoda analisa Titrimetri dikelompokkan dalam empat jenis, yaitu ;
1. Reaksi Asam-basa
2. Reaksi Oksidasi – Reduksi
3. Reaksi Pengendapan
4. Reaksi Pembentukan Kompleks
Berdasarkan cara titrasinya, titrimetri dikelompokkan menjadi:
1. Titrasi langsung. Cara ini dilakukan dengan melakukan titrasi langsung
terhadap zat yang akan ditetapkan.
2. Titrasi tidak langsung. Cara ini dilakukan dengan cara penambahan titran
dalam jumlah berlebihan, kemudian kelebihan titran dititrasi dengan titran
lain, volume titrasi yang didapat menunjukkan jumlah ekuivalen dari
kelebihan titran, sehingga diperlukan titrasi blanko. Larutan blanko adalah
larutan yang berisi semua pereaksi yang digunakan tanpa sampel.Syarat reaksi yang harus dipenuhi dalam analisis Titrimetri adalah:
1. Reaksi harus berjalan sesuai dengan suatu persamaan reaksi tertentu. Tidak
boleh ada reaksi samping.
2. Harus ada perubahan yang terlihat pada saat titik ekuivalen tercapai, baik
secara kimia maupun fisika.
3. Harus ada indikator yang cocok untuk menentukan titik akhir titrasi, jika
reaksi tidak menunjukkan perubahan kimia atau fisika. Indikator
potensiometrik dapat digunakan pula.
4. Reaksi harus berlangsung cepat, sehingga titrasi dapat dilakukan dalam
beberapa menit.
Dalam bahan makanan banyak mengandung senyawa yang bersifat asam ataupun
basa, misalnya asam askorbat dalam buah-buahan, asam asetat dalam cuka,
senyawa karbonat dalam minuman dan lain-lain. Komponen utama cuka yang
terdapat di pasaran adalah asam asetat walaupun terdapat sedikit asam lain di
dalamnya. Biasanya kadar total asam dalam cuka dinyatakan dengan konsentrasi
asam asetat. Dalam beberapa kasus kadar asam asetat yang terdapat di dalam
larutan cuka tersebut tidak sesuai dengan nilai konsentrasi asam asetat yang
tercantum dalam kemasan cuka tersebut.
Untuk menentukan kadar senyawa-senyawa tersebut dapat dilakukan analisis
dengan menggunakan metode titrasi berdasarkan reaksi penetralan (asam basa).
Sebelum melakukan titrasi penetralan perlu memahami prinsip dasar reaksi
penetralan yaitu reaksi antara ion hidrogen yang berasal dari asam dengan ion
hidroksida yang berasal dari basa sehingga menghasilkan air yang bersifat
netral. Setelah memahami prinsip dasar titrasi penetralan kemudian melakukan
pemilihan larutan standar yang akan digunakan untuk mentitrasi sampel,
melakukan standarisasi larutan standar, melakukan titrasi sampel dan melakukan
perhitungan kadar sampel serta bagaimana membuat laporan hasil titrasi. Untuk
mengetahui kapan suatu titrasi berakhir (titik akhir titrasi) maka diperlukan suatuindikator. Indikator yang digunakan harus dipilih agar trayek pH indikator sesuai
dengan trayek pH titrasi pada saat titik ekivalen tercapai sehingga titik akhir
titrasi dapat ditentukan dengan tepat pada saat indikator tepat berubah warna
dan tidak berubah lagi warnanya setelah beberapa detik.
 

IKATAN KIMIA

IKATAN KIMIA

A.  Peranan Elektron Dalam Ikatan Kimia
Teori duplet dan oktet dari G.N. Lewis merupakan dasar ikatan kimia.
Lewis mengemukakan bahwa suatu atom berikatan dengan cara menggunakan bersama dua elektron atau lebih untuk mencapai konfigurasi elektron gas mulia (ns2np6)
Contoh:
TEORI INI MENDAPAT BEBERAPA KESULITAN, YAKNI :
1.
Pada senyawa BCl3 dan PCl5, atom boron dikelilingi 6 elektron, sedangkan atom fosfor dikelilingi 10 elektron.




2.
Menurut teori ini, jumlah ikatan kovalen yang dapat dibentuk suatu unsur tergant~u~g jumlah elektron tak berpasangan dalam unsur tersebut.
Contoh : 8O : 1s2 2s2 2p2 2px2 2py1 2pz1
Ada 2 elektron tunggal. sehingga oksigen dapat membentuk 2 ikatan (H-O-H; O=O).

akan tetapi:
                5B : 1s2 2s2 2px1
Sebenarnya hal ini dapat diterangkan bila kita ingat pada prinsip Hund, dimana cara pengisian elektron dalam orbital suatu sub kulit ialah bahwa elektron-elektron tidak membentuk pasangan elektron sebelum masing-masing orbital terisi dengan sebuah elektron.
Contoh : 5B : 1s2 2s2 2px1    (hibridisasi) 1s2 2s1 2px1 2py1

Tampak setelah terjadi hibridisasi untuk berikatan dengan atom B memerlukan tiga buah elektron, seperti BCl3

3.
Menurut teori di atas, unsur gas mulia tidak dapat membentuk ikatan karena di sekelilingnya telah terdapat
8 elektron. Tetapi saat ini sudah diketahui bahwa Xe dapat membentuk senyawa, misalnya XeF2 den XeO2.

Teori lain adalah teori ikatan valensi. Dalam teori ini ikatan antar atom terjadi dengan care saling bertindihan dari orbital-orbital atom. Elektron dalam orbital yang tumpang tindih harus mempunyai bilangan kuantum spin yang berlawanan.
BEBERAPA MACAM IKATAN KIMIA YANG TELAH DIKETAHUI, ANTARA LAIN :
A.
Ikatan antar atom
1. Ikatan ion = elektrovalen = heteropolar



2. Ikatan kovalen = homopolar



3. Ikatan kovalen koordinasi = semipolar



4. Ikatan logam

B.
Ikatan antar molekul
1. Ikatan hidrogen



2. Ikatan van der walls



B.  Ikatan Ion = Elektrovalen = Heteropolar
Ikatan ion biasanya terjadi antara atom-atom yang mudah melepaskan elektron (logam-logam golongan utama) dengan atom-atom yang mudah menerima elektron (terutama golongan VIA den VIIA). Makin besar perbedaan elektronegativitas antara atom-atom yang membentuk ikatan, maka ikatan yang terbentuk makin bersifat ionik.
PADA UMUMNYA UNSUR-UNSUR YANG MUDAH MEMBENTUK IKATAN ION ADALAH
- IA  VIIA atau VIA
- IIA   VIIA atau VIA
- Unsur transisi VIIA atau VIA
Contoh:
        Na              Na + e-
1s2 2s2 2p6 3s1          1s2 2s2 2p6 (konfigurasi Ne)
Atom Cl (VIIA) mudah menerima elektron sehingga elektron yang dilepaskan oleh atom Na akan ditangkap oleh atom Cl.
      Cl + e-                     Cl-
1s2 2s2 2p6 3s2 3p5                1s2 2s2 2p6 3s2 3p6 (konfigurasi Ar)
Antara ion-ion Na+ dan Cl- terjadi gaya tarik menarik elektrostatik, sehingga membentuk senyawa ion Na+Cl-.
Contoh lain : CaCl2 , MgBr2, BaO , FeS dan sebagainya.
SIFAT-SIFAT SENYAWA IONIK ANTARA LAIN

a. bersifat polar
b. larutannya dalam air menghantarkan arus listrik
c. titik lelehnya tinggi
d. lelehannya menghantarkan arus listrik
e. larut dalam pelarut-pelarut polar

C.  Ikatan Kovalen = Homopolar
Ikatan kovalen terjadi karena adanya pemakaian bersama elektron dari atom-atom yang membentuk ikatan. Pada umumnya ikatan kovalen terjadi antara atom-atom bukan logam yang mempunyai perbedaan elektronegativitas rendah atau nol. Seperti misalnya : H2, CH4, Cl2, N2, C6H6, HCl dan sebagainya.
IKATAN KOVALEN TERBAGI ATAS
1.
IKATAN KOVALEN POLAR
Atom-atom pembentuknya mempunyai gaya tarik yang tidak sama terhadap pasangan elektron
persekutuannya. Hal ini terjadi karena beda keelektronegatifan kedua atomnya. Elektron persekutuan akan
bergeser ke arah atom yang lebih elektronegatif akibatnya terjadi pemisahan kutub positif dan negatif.
 
 
Dalam senyawa HCl ini, Cl mempunyai keelektronegatifan yang lebih besar dari H. sehingga pasangan elektron lebih tertarik ke arah Cl, akibatnya H relatif lebih elektropositif sedangkan Cl relatif menjadi elektronegatif.
Pemisahan muatan ini menjadikan molekul itu bersifat polar dan memiliki "momen dipol" sebesar:
T = n . l
dimana :
T = momen dipol
n = kelebihan muatan pada masing-masing atom
l  = jarak antara kedua inti atom


2.
IKATAN KOVALEN NON POLAR
Titik muatan negatif elektron persekutuan berhimpit, sehingga pada molekul pembentukuya tidak terjadi momen dipol, dengan perkataan lain bahwa elektron persekutuan mendapat gaya tarik yang sama.
Contoh:

Kedua atom H mempunyai harga keelektronegatifan yang sama.


Karena arah tarikan simetris, maka titik muatan negatif elektron persekutuan berhimpit.
Contoh lain adalah senyawa CO2, O2, Br2 dan lain-lain



D.  Ikatan Kovalen Koordinasi = Semipolar
Ikatan kovalen koordinasi adalah ikatan yang terjadi apabila pasangan elektron yang dipakai bersama berasal dari salah satu atom yang membentuknya.
Jadi di sini terdapat satu atom pemberi pasangan elektron bebas (elektron sunyi), sedangkan atom lain sebagai
penerimanya.
SYARAT PEMBENTUKANNYA
1. Atom yang satu memiliki pasangan elektron bebas
2. Atom lainnya memiliki orbital kosong
Contoh:
- Ion hidronium (H3O+): H2O + H+ H3O+L
 
 
 
- Ion amonium : NH4+

E.  Ikatan Logam, Ikatan Hidrogen Dan Ikatan Van Der Walls
IKATAN LOGAM
Pada ikatan kovalen, elektron-elektron ikatan seolah-olah menjadi milik sepasang atom, sehingga tidak dapat bergerak bebas. Pada logam, elektron-elektron yang menyebabkan terjadinya ikatan di antara atom-atom logam tidak hanya menjadi milik sepasang atom saja, tetapi menjadi milik semua atom logam, sehingga elektron-elektron dapat bergerak bebas. Karena itulah maka logam-logam dapat menghantarkan arus listrik.

IKATAN HIDROGEN

Ikatan ini merupakan gaya tarik menarik antara atom H dengan atom lain yang mempunyai keelektronegatifan besar pada satu molekul dari senyawa yang sama.
Contoh:
- molekul H2O



- molekul HF

IKATAN VAN DER WALLS
Gas mempunyal sifat bentuk dan volumenya dapat berubah sesuai tempatnya. Jarak antara molekul-molekul gas relatif jauh dan gaya tarik menariknya sangat lemah. Pada penurunan suhu, fasa gas dapat berubah menjadi fasa cair atau padat. Pada keadaan ini jarak antara molekul-molekulnya menjadi lebih dekat dan gaya tarik menariknya relatif lebih kuat. Gaya tarik menarik antara molekul-molekul yang berdekatan ini disebut gaya Van der walls.

F.  Bentuk Molekul
Dalam bentuk molekul dikenal adanya teori ikatan valensi. Teori ini menyatakan bahwa ikatan antar atom terjadi dengan cara saling bertindihan dari orbital-orbital atom. Elektron dalam orbital yang tumpang tindih harus mempunyai bilangan kuantum spin yang berlawanan.
Pertindihan antara dua sub kulit s tidak kuat, oleh karena distribusi muatan yang berbentuk bola, oleh sebab itu pada umumnya ikatan s - s relatif lemah.
Sub kulit "p" dapat bertindih dengan sub kulit "s" atau sub kulit "p" lainnya, ikatannya relatif lebih kuat, hal ini dikarenakan sub kulit "p" terkonsentrasi pada arah tertentu.
Contoh:
a.
Molekul HF:
- konfigurasi atom H : 1s1



- konfigurasi atom F: 1s2 2s2 2Px2 2py2 2pz1




Tumpang tindih terjadi antara sub kulit 1s dari atom H dengan orbital 2pz dari aton, F. Pertindihan demikian disebut pertindihan sp.

b.
Molekul H2O:
- konfigurasi atom H : 1s1



- konfigurasi atom O: 1s2 2s2 2Px2 2py1 2pz1




Dalam atom O terdapat 2 elektron dalam keadaan yang tidak berpasangan (orbital 2py dan 2pz), masing-masing orbital ini akan bertindihan dengan orbital 1s dari 2 atom H. Kedudukan orbital-orbital p saling tegak lurus, diharapkan sudut ikatannya sebesar 90o, tetapi karena adanya pengaruh pasangan elektron 2px, maka kedua ikatan tersebut akan tertolak dan membentuk sebesar 104.5o.

c.
Molekul CH4
- konfigurasi atom H: 1s1



- konfigurasi atom C: 1s2 2s2 2Px1 2py1 2pz0




Untuk mengikat 4 atom H menjadi CH4, maka 1 elektron dari orbital 2s akan dipromosikan ke orbital 2pz, sehingga konfigurasi elektron atom C menjadi: 1s1 2s1 2px1 2py1 2pz1 . Orbital 2s mempunyai bentuk yang berbeda dengan ketiga orbital 2p, akan tetapi ternyata kedudukan keempat ikatan C-H dalam CH4 adalah sama. Hal ini terjadi karena pada saat orbital 2s, 2px, 2py dan 2pz menerima 4 elektron dari 4 atom H, keempat orbital ini berubah bentuknya sedemikian sehingga mempunyai kedudukan yang sama. Peristiwa ini disebut "hibridisasi". Karena perubahan yang terjadi adalah 1 orbital 2s dan 3 orbital 2p, maka disebut hibridisasi sp3. Bentuk molekul dari ikatan hibrida sp3 adalah tetrahedron.

 
BEBERAPA BENTUK GEOMETRI IKATAN, ANTARA LAIN :
Jenis ikatan
Jumlah ikatan maksimum
Bentuk geometrik

sp
2
Linier

sp2
3
Segitiga datar

sp3
4
Tetrahedron

dsp3
5
Trigonal bipiramid

sp2d ; dsp2
4
Segiempat datar

d2sp3 ; sp3d2
6
Oktahedron

STRUKTUR ATOM

STRUKTUR ATOM

A.  Pengertian Dasar
a. Partikel dasar : partikel-partikel pembentuk atom yang terdiri dari elektron, proton den neutron.
1. Proton
:
partikel pembentuk atom yang mempunyai massa sama dengan satu sma (amu) dan bermuatan +1.

2. Neutron
:
partikel pembentuk atom yang bermassa satu sma (amu) dan netral.

3. Elektron
:
partikel pembentuk atom yang tidak mempunyai massa dan bermuatan -1.

b. Nukleus : Inti atom yang bermuatan positif, terdiri dari proton den neutron.

c. Notasi unsur : zA A dengan X : tanda atom (unsur)

Z : nomor atom
= jumlah elektron (e)
= jumlah proton (p)


A : bilangan massa
= jumlah proton + neutron

Pada atom netral, berlaku: jumlah elektron = jumlah proton.
Contoh :
1. Tentukan jumlah elektron, proton den neutron dari unsur 2656 Fe !
Jawab :
Jumlah elektron = jumlah proton = nomor atom = 26
Jumlah neutron = bilangan massa - nomor atom = 56 - 26 = 30
2. Berikan notasi unsur X, jika diketahui jumlah neutron = 14 dan jumlah elektron = 13 !
Jawab :
Nomor atom = jumlah elektron = 13
Bilangan massa = jumlah proton + neutron = 13 + 14 = 27
Jadi notasi unsurnya: 13 27 X

d. Atom tak netral : atom yang bermuatan listrik karena kelebihan atau kekurangan elektron bila dibandingkan dengan atom netralnya.
Atom bermuatan positif bila kekurangan elektron, disebut kation.
Atom bermuatan negatif bila kelebihan elektron, disebut anion.
Contoh:
- Na+  : kation dengan kekurangan 1 elektron
- Mg2- : kation dengan kekurangan 2 elektron
- Cl-    : anion dengan kelebihan 1 elektron
- O2     : anion dengan kelebihan 2 elektron
e. Isotop : unsur yang nomor atomnya sama, tetapi berbeda bilangan massanya.
Contoh: Isotop oksigen: 816 O ; 817 O ; 818 O

f. Isobar : unsur yang bilangan massanya sama, tetapi berbeda nomor atomnya.
Contoh: 2759 CO dengan 2859 Ni

g. Isoton : unsur dengan jumlah neutron yang sama.
Contoh: 613 C dengan 714 N

h. Iso elektron: atom/ion dengan jumlah elektron yang sama.
Contoh: Na+ dengan Mg2+
                 K+ dengan Ar

B.  Model Atom
A.  MODEL ATOM JOHN DALTON
-
atom adalah bagian terkecil suatu unsur

-
atom tidak dapat diciptakan, dimusnahkan, terbagi lagi, atau diubah menjadi zat lain

-
atom-atom suatu unsur adalah same dalam segala hal, tetapi berbeda dengan atom-atom dari unsur lain

-
reaksi kimia merupakan proses penggabungan atau pemisahan atom dari unsur-unsur yang terlihat

Kelemahan teori atom Dalton: tidak dapat membedakan pengertian atom den molekul. Dan atom ternyata bukan partikel yang terkecil.
B.
MODEL ATOM J.J. THOMPSON
-
atom merupakan suatu bola bermuatan positif dan di dalamnya tersebar elektron-elektron seperti kismis

-
jumlah muatan positif sama dengan muatan negatif, sehingga atom bersifat netral


C. MODEL ATOM RUTHERFORD
-
atom terdiri dari inti atom yang sangat kecil dengan muatan positif yang massanya merupakan massa atom tersebut

-
elektron-elektron dalam atom bergerak mengelilingi inti tersebut

-
banyaknya elektron dalam atom sama dengan banyaknya proton dalam inti dan ini sesuai dengan nomor
atomnya


D. MODEL ATOM BOHR
-
elektron-elektron dalam mengelilingi inti berada pada tingkat-tingkat energi (kulit) tertentu tanpa
menyerap atau memancarkan energi

-
elektron dapat berpindah dari kulit luar ke kulit yang lebih dalam dengan memancarkan energi, atau
sebaliknya


C.  Bilangan-Bilangan Kuantum
Untuk menentukan kedudukan suatu elektron dalam atom, digunakan 4 bilangan kuantum.
1. Bilangan kuantum utama (n): mewujudkan lintasan elektron dalam atom.
n mempunyai harga 1, 2, 3, .....
- n = 1 sesuai dengan kulit K
- n = 2 sesuai dengan kulit L
- n = 3 sesuai dengan kulit M
- dan seterusnya
Tiap kulit atau setiap tingkat energi ditempati oleh sejumlah elektron. Jumlah elektron maksimmm yang dapat menempati tingkat energi itu harus memenuhi rumus Pauli = 2n2.
Contoh:
kulit ke-4 (n=4) dapat ditempati maksimum= 2 x 42 elektron = 32 elektron
2. Bilangan kuantum azimuth (l) : menunjukkan sub kulit dimana elektron itu bergerak sekaligus menunjukkan sub kulit yang merupakan penyusun suatu kulit.
Bilangan kuantum azimuth mempunyai harga dari 0 sampai dengan (n-1).
n = 1 ; l = 0 ; sesuai kulit K
n = 2 ; l = 0, 1 ; sesuai kulit L
n = 3 ; l = 0, 1, 2 ; sesuai kulit M
n = 4 ; l = 0, 1, 2, 3 ; sesuai kulit N
dan seterusnya
Sub kulit yang harganya berbeda-beda ini diberi nama khusus:
l = 0 ; sesuai sub kulit s (s = sharp)
l = 1 ; sesuai sub kulit p (p = principle)
l = 2 ; sesuai sub kulit d (d = diffuse)
l = 3 ; sesuai sub kulit f  (f = fundamental)
Bilangan kuantum magnetik (m): mewujudkan adanya satu atau beberapa tingkatan energi di dalam satu sub kulit. Bilangan kuantum magnetik (m) mempunyai harga (-l) sampai harga (+l).
Untuk:

l = 0 (sub kulit s), harga m =   0 (mempunyai 1 orbital)
l = 1 (sub kulit p), harga m = -1, O, +1 (mempunyai 3 orbital)
l = 2 (sub kulit d), harga m = -2, -1, O, +1, +2 (mempunyai 5 orbital)
l = 3 (sub kwit f) , harga m = -3, -2, O, +1, +2, +3 (mempunyai 7 orbital)
4. Bilangan kuantum spin (s): menunjukkan arah perputaran elektron pada sumbunya.
Dalam satu orbital, maksimum dapat beredar 2 elektron dan kedua elektron ini berputar melalui sumbu dengan arah yang berlawanan, dan masing-masing diberi harga spin +1/2 atau -1/2.
Pertanyaan:
Bagaimana menyatakan keempat bilangan kuantum dari elektron 3s1 ?
Jawab:
Keempat bilangan kuantum dari kedudukan elektron 3s1 dapat dinyatakan sebagai,
n= 3 ; l = 0 ; m = 0 ; s = +1/2 ; atau -1/2
D.  Konfigurasi Elektron
Dalam setiap atom telah tersedia orbital-orbital, akan tetapi belum tentu semua orbital ini terisi penuh. Bagaimanakah pengisian elektron dalam orbital-orbital tersebut ?
Pengisian elektron dalam orbital-orbital memenuhi beberapa peraturan. antara lain:
1. Prinsip Aufbau : elektron-elektron mulai mengisi orbital dengan tingkat energi terendah dan seterusnya.
Orbital yang memenuhi tingkat energi yang paling rendah adalah 1s dilanjutkan dengan 2s, 2p, 3s, 3p, dan seterusnya dan untuk mempermudah dibuat diagram sebagai berikut:


Contoh pengisian elektron-elektron dalam orbital beberapa unsur:
Atom H : mempunyai  1 elektron, konfigurasinya 1s1
Atom C : mempunyai  6 elektron, konfigurasinya 1s2 2s2 2p2
Atom K : mempunyai 19 elektron, konfigurasinya 1s2 2s2 2p6 3S2 3p6 4s1
2. Prinsip Pauli : tidak mungkin di dalam atom terdapat 2 elektron dengan keempat bilangan kuantum yang sama.
Hal ini berarti, bila ada dua elektron yang mempunyai bilangan kuantum utama, azimuth dan magnetik yang sama, maka bilangan kuantum spinnya harus berlawanan.
3. Prinsip Hund : cara pengisian elektron dalam orbital pada suatu sub kulit ialah bahwa elektron-elektron tidak membentuk pasangan elektron sebelum masing-masing orbital terisi dengan sebuah elektron.
Contoh:

- Atom C dengan nomor atom 6, berarti memiliki 6 elektron dan cara Pengisian orbitalnya adalah:


Berdasarkan prinsip Hund, maka 1 elektron dari lintasan 2s akan berpindah ke lintasan 2pz, sehingga sekarang ada 4 elektron yang tidak berpasangan. Oleh karena itu agar semua orbitalnya penuh, maka atom karbon berikatan dengan unsur yang dapat memberikan 4 elektron. Sehingga di alam terdapat senyawa CH4 atau CCl4, tetapi tidak terdapat senyawa CCl3 atau CCl5. 

REAKSI REDOKS DAN ELEKTROKIMIA

REAKSI REDOKS DAN ELEKTROKIMIA

A.  Oksidasi - Reduksi
OKSIDASI REDUKSI
Klasik


Oksidasi

Reaksi antara suatu zat dengan oksigen


Reduksi
Reaksi antara suatu zat dengan hidrogen




Modern
Oksidasi

- Kenaikan Bilangan Oksidasi
- Pelepasan Elektron

Reduksi

- Penurunan Bilangan Oksidasi
- Penangkapan Elektron


Oksidator

- Mengalami Reduksi
- Mengalami Penurunan Bilangan Oksidasi
- Memapu mengoksidasi
- Dapat menangkap elektron


Reduktor

- Mengalami oksidasi
- Mengalami kenaikan Bilangan Oksidasi
- Mampu mereduksi
- Dapat memberikan elektron


Auto Redoks

- Reaksi redoks di mana sebuah zat mengalami
reduksi sekaligus oksidasi





B.  Konsep Bilangan Oksidasi

Pengertian Bilangan Oksidasi :
Muatan listrik yang seakan-akan dimiliki oleh unsur dalam suatu senyawa atau ion.

HARGA BILANGAN OKSIDASI
1.
Unsur bebas Bialngan Oksidasi = 0


2.
Oksigen
Dalam Senyawa Bilangan Oksidasi = -2
kecuali
a. Dalam peroksida, Bilangan Oksidasi = -1
b. Dalam superoksida, Bilangan Oksida = -1/2
c. Dalam OF2, Bilangan Oksidasi = +2


3.
Hidrogen
Dalam senyawa, Bilangan Oksidasi = +1
Kecuali dalam hibrida = -1


4.
Unsur-unsur Golongan IA
Dalam Senyawa, Bilangan Oksidasi = +2


5.
Unsur-unsur Golongan IIA
Dalam senyawa, Bilangan Oksidasi = +2


6.
Bilangan Oksidasi molekul = 0


7.
Bilangan Oksidasi ion = muatan ion


8.
Unsur halogen
F
: 0, -1

Cl
: 0, -1, +1, +3, +5, +7

Br
: 0, -1, +1, +5, +7

I
: 0, -1, +1, +5, +7




C.  Langkah-Langkah Reaksi Redoks
LANGKAH-LANGKAH PENYETARAAN REAKSI REDOKS
1.
CARA BILANGAN OKSIDASI
a.
Tentukan mana reaksi oksidasi dan reduksinya.

b.
Tentukan penurunan Bilangan Oksidasi dari oksidator dan kenaikan Bilangan Oksidasi dari reduktor.

c.
Jumlah elektron yang diterima dan yang dilepaskan perlu disamakan dengan mengalikan terhadap suatu faktor.

d.
Samakan jumlah atom oksigen di kanan dan kiri reaksi terakhir jumlah atom hidrogen di sebelah kanan dan kiri reaksi.



2.
CARA SETENGAH REAKSI
a.
Tentukan mana reaksi oksidasi dan reduksi.

b.
Reaksi oksidasi dipisahkan daui reaksi reduksi

c.
Setarakan ruas kanan dan kiri untuk jumlah atom yang mengalami perubahan Bilangan Oksidasi untuk reaksi yang jumlah atom-atom kanan dan kiri sudah sama, setarakan muatan listriknya dengan menambahkan elektron.

d.
Untuk reaksi yang jumlah atom oksigen di kanan dan kiri belum sama setarakan kekurangan oksigen dengan menambahkan sejumlah H2O sesuai dengan jumlah kekurangannya.

e.
Setarakan atom H dengan menambah sejumlah ion H+ sebanyak kekurangannya.

f.
Setarakan muatan, listrik sebelah kanan dan kiri dengan menambahkan elektron pada ruas yang kekurangan muatan negatif atau kelebihan muatan positif.

g.
Samakan jumlah elektron kedua reaksi dengan mengalikan masing-masing dengan sebuah faktor.




D.  Penyetaraan Persamaan Reaksi Redoks
Tahapan:
Tentukan perubahan bilangan oksidasi.
Setarakan perubahan bilangan oksidasi.
Setarakan jumlah listrik ruas kiri dan kanan dengan :
H+          pada larutan bersifat asam
OH-          pada larutan bersifat basa
Tambahkan H2O untuk menyetarakan jumlah atom H.
Contoh:
MnO4- + Fe2+          Mn2+ + Fe3+ (suasana asam)
1.
MnO4- + Fe2+          Mn2+ + Fe3+


..+7...... +2.......        +2...... +3


.................                


........................+1

2.
Angka penyerta = 5
MnO4- + 5 Fe2+           Mn2+ + 5 Fe3+


3.
MnO4- + 5 Fe2+ + 8 H+          Mn2+ + 5 Fe3+


4.
MnO4- + 5 Fe2+ + 8 H+           Mn2+ + 5 Fe3+ + 4 H2O


E.  Elektrokimia
SEL ELEKTROKIMIA
1.
Sel Volta/Galvani
1. terjadi penubahan : energi kimia  energi listrik
2. anode = elektroda negatif (-)
3. katoda = elektroda positif (+)


2.
Sel Elektrolisis
1. terjadi perubahan : energi listrik  energi kimia
2. anode = elektroda positif (+)
3. katoda = elektroda neeatif (-)


F.  Sel Volta

KONSEP-KONSEP SEL VOLTA

Sel Volta
1.
Deret Volta/Nerst
a.
Li, K, Ba, Ca, Na, Mg, Al, Mn, Zn
Fe Ni, Sn, Pb, (H), Cu, Hg, Ag, Pt, Au


b.
Makin ke kanan, mudah direduksi sukar dioksidasi
Makin ke kiri, mudah dioksidasi sukar direduksi




2.
Prinsip
1. Anoda terjadi reaksi oksidasi ; Katoda terjadi reaksi reduksi
2. Arus elektron : anoda  katoda ; Arus listrik : katoda  anoda
3. Jembatan garam: menyetimbangkan ion-ion dalam larutan


MACAM SEL VOLTA
1.
Sel Kering atau Sel Leclance
= Katoda : Karbon
= Anoda :Zn
= Elektrolit : Campuran berupa pasta : MnO2 + NH4Cl + sedikit Air


2.
Sel Aki
= Katoda: PbO2
= Anoda : Pb
= Elektrolit: Larutan H2SO4
= Sel sekunder


3.
Sel Bahan Bakar
= Elektroda : Ni
= Elektrolit : Larutan KOH
= Bahan Bakar : H2 dan O2


4.
Baterai Ni - Cd
= Katoda : NiO2 dengan sedikit air
= Anoda : Cd


G.  Potensial Elektroda
POTENSIAL ELEKTRODA
1.
Pengertian
Merupakan ukuran terhadap besarnya kecenderungan suatu unsur untuk melepaskan atau mempertahankan elektron


2.
Elektroda Hidrogen
- E° H2 diukur pada 25° C, 1 atm dan {H+} = 1 molar
- E° H2 = 0.00 volt


3.
Elektroda Logam
- E° logam diukur terhadap E° H2
- Logam sebelah kiri H : E° elektroda < 0
- Logam sebelah kanan H : E° elektroda > 0


4.
Cara Menghitung Potensial Elektroda Sel
1. E° sel = E° red - E° oks
2. E sel = E° sel - RT/nF ln C
Pada 25° C :
E sel = E° sel - 0.059/n log C
Elektroda tergantung pada :
- Jenis Elektroda
- Suhu
- Konsentrasi ionnya



Catatan :
E° = potensial reduksi standar (volt)
R = tetapan gas - [ volt.coulomb/mol.°K] = 8.314
T = suhu mutlak (°K)
n = jumlah elektron
F = 96.500 coulomb
C = [bentuk oksidasi]/[bentuk reduksi]

H.  Korosi

1.
Prinsip
Proses Elektrokimia
Proses Oksidasi Logam


2.
Reaksi perkaratan besi
a.
Anoda: Fe(s) ® Fe2+ + 2e
Katoda: 2 H+ + 2 e- ® H2
2 H2O + O2 + 4e- ® 4OH-


b.
2H+ + 2 H2O + O2 + 3 Fe ® 3 Fe2+ + 4 OH- + H2
Fe(OH)2 oleh O2 di udara dioksidasi menjadi Fe2O3 . nH2O



3.
Faktor yang berpengaruh

1. Kelembaban udara
2. Elektrolit
3. Zat terlarut pembentuk asam (CO2, SO2)
4. Adanya O2
5. Lapisan pada permukaan logam
6. Letak logam dalam deret potensial reduksi


4.
Mencegah Korosi
1. Dicat
2. Dilapisi logam yang lebih mulia
3. Dilapisi logam yang lebih mudah teroksidasi
4. Menanam batang-batang logam yang lebih aktif dekat logam besi dan dihubungkan
5. Dicampur dengan logam lain


I.  KOROSI
1.
Prinsip
Proses Elektrokimia
Proses Oksidasi Logam


2.
Reaksi perkaratan besi
a.
Anoda: Fe(s) ® Fe2+ + 2e
Katoda: 2 H+ + 2 e- ® H2
2 H2O + O2 + 4e- ® 4OH-


b.
2H+ + 2 H2O + O2 + 3 Fe ® 3 Fe2+ + 4 OH- + H2
Fe(OH)2 oleh O2 di udara dioksidasi menjadi Fe2O3 . nH2O



3.
Faktor yang berpengaruh

1. Kelembaban udara
2. Elektrolit
3. Zat terlarut pembentuk asam (CO2, SO2)
4. Adanya O2
5. Lapisan pada permukaan logam
6. Letak logam dalam deret potensial reduksi


4.
Mencegah Korosi
1. Dicat
2. Dilapisi logam yang lebih mulia
3. Dilapisi logam yang lebih mudah teroksidasi
4. Menanam batang-batang logam yang lebih aktif dekat logam besi dan dihubungkan
5. Dicampur dengan logam lain



J.   Elektrolisis
1.  Katoda [elektroda -]

Terjadi reaksi reduksi


Jenis logam tidak diperhatikan, kecuali logam Alkali (IA) den Alkali tanah (IIA), Al dan Mn


Reaksi:
2 H+(aq) + 2e-  H2(g)
ion golongan IA/IIA  tidak direduksi; penggantinya air
2 H2O() + 2 e-  basa + H2(g)
ion-ion lain  direduksi

2.  Anoda [ektroda +]

Terjadi reaksi oksidasi


Jenis logam diperhatikan

a. Anoda : Pt atau C (elektroda inert)
reaksi : - 4OH-(aq)  2H2O() + O2(g) + 4e-
- gugus asam beroksigen tidak teroksidasi, diganti oleh 2 H2O()  asam + O2(g)
- golongan VIIA (halogen)  gas
b. Anoda bukan : Pt atau C
reaksi : bereaksi dengan anoda membentuk garam atau
senyawa lain.


K.  Hukum Faraday
PRINSIP PERHITUNGAN ELEKTROLISIS
1.
Hukum Faraday I
"Massa zat yang terbentuk pada masing-masing elektroda sebanding dengan kuat arus/arus listrik yang mengalir pada elektrolisis tersebut".
Rumus:
m = e . i . t / 96.500
q = i . t
m = massa zat yang dihasilkan (gram)
e = berat ekivalen = Ar/ Valens i= Mr/Valensi
i = kuat arus listrik (amper)
t = waktu (detik)
q = muatan listrik (coulomb)


2.
Hukum Faraday II
"Massa dari macam-macam zat yang diendapkan pada masing-masing elektroda (terbentuk pada masing-masing elektroda) oleh sejumlah arus listrik yang sama banyaknya akan sebanding dengan berat ekivalen masing-masing zat tersebut."
Rumus:
m1 : m2 = e1 : e2
m = massa zat (garam)
e = beret ekivalen = Ar/Valensi = Mr/Valensi


Contoh:
Pada elektrolisis larutan CuSO4 dengan elektroda inert, dialirkan listrik 10 amper selama 965 detik.
Hitunglah massa tembaga yang diendapkan pada katoda dan volume gas oksigen yang terbentuk di anoda pada (O°C, 1 atm), (Ar: Cu = 63.5 ; O = 16).
Jawab:
CuSO4 (aq)  Cu2+(aq) + SO42-(aq)
Katoda [elektroda - : reduksi] : Cu2+(aq) + 2e-  Cu(s)
Anoda [elektroda + : oksidasi]: 2 H2O(l)  O2(g) + 4 H+(aq) + 4 e-
a.
massa tembaga:
m = e . i . t/96.500 = (Ar/Valensi) x (10.965/96.500) = 63.5/2 x 9.650/96.500 = 31.25 x 0,1 = 3,125 gram


b.
m1 : m2 = e1 : e2
mCu : mO2 = eCu : eO2
3,125 : mO2 = 6.32/2 : 32/4
3,125 : mO2 = 31,25 : 8
mO2 = (3.125 x 8)/31.25 = 0.8 gram
mol O2 = 0.8/32 = 8/320 = 1/4 mol
volume O2 (0°C, 1 atm) = 1/40 x 22.4 = 0.56 liter

HASIL KALI KELARUTAN

HASIL KALI KELARUTAN

A.  Pengertian Dasar
Bila sejumlah garam AB yang sukar larut dimasukkan ke dalam air maka akan terjadi beberapa kemungkinan:
- Garam AB larut semua lalu jika ditambah garam AB lagi masih dapat
   larut            larutan tak jenuh.
- Garam AB larut semua lalu jika ditambah garam AB lagi tidak dapat
   larut           larutan jenuh.
- Garam AB larut sebagian            larutan kelewat jenuh.
Ksp = HKK = hasil perkalian [kation] dengan [anion] dari larutan jenuh suatu elektrolit yang sukar larut menurut kesetimbangan heterogen.
Kelarutan suatu elektrolit ialah banyaknya mol elektrolit yang sanggup melarut dalam tiap liter larutannya.
Contoh:
AgCl(s)             Ag+(aq) + Cl-(aq)
K =  [Ag+] [Cl-] / [AgCl]
K . [AgCl]  =  [Ag+][Cl-]
KspAgCl  =  [Ag+] [Cl-]
Bila Ksp AgCl = 10-10 , maka berarti larutan jenuh AgCl dalam air pada suhu 25oC, Mempunyai nilai [Ag+] [Cl-] = 10-10

B.  Kelarutan
1. Kelarutan zat AB dalam pelarut murni (air).

AnB(s)            nA+(aq) + Bn-(aq)
   s                     n.s         s
Ksp AnB = (n.s)n.s = nn.sn+1            s = n+i Ksp AnB/nn
dimana: s = sulobility = kelarutan
Kelarutan tergantung pada:
- suhu
- pH larutan
- ada tidaknya ion sejenis
2. Kelarutan zat AB dalam larutan yang mengandung ion sejenis
AB(s)   A+ (aq) + B- (aq)
  s           n.s         s
Larutan AX :
AX(aq)   A+(aq) + X-(aq)
   b            b         b
maka dari kedua persamaan reaksi di atas:

[A+] = s + b = b, karena nilai s cukup kecil bila dibandingkan terhadap nilai b sehingga dapat diabaikan.
[B-1] = s
Jadi :   Ksp AB = b . s
Contoh:
Bila diketahui Ksp AgCl = 10-10 ,berapa mol kelarutan (s) maksimum AgCl dalam 1 liter larutan 0.1 M NaCl ?
Jawab:
AgCl(s)   Ag+(aq) + Cl-(aq)
    s           s           s
NaCl(aq)   Na+(aq) + Cl-(aq)
Ksp AgCl = [Ag+] [Cl-] = s . 10-1
Maka s = 10-10/10-1 = 10-9 mol/liter
Dari contoh di atas. kita dapat menarik kesimpulan bahwa makin besar konsentrasi ion sojenis maka makin kecil kelarutan elektrolitnya.
a.
Pembentukan garam-garam
Contoh: kelarutan CaCO3(s) pada air yang berisi CO2 > daripada dalam air.
CaCO3(s) + H2O(l) + CO2(g)   Ca(HCO3)2(aq)
                                               larut

b.
Reaksi antara basa amfoter dengan basa kuat
Contoh: kelarutan Al(OH)3 dalam KOH > daripada kelarutan Al(OH)3 dalam air.
Al(OH)3(s) + KOH(aq)   KAlO2(aq) + 2 H2O(l)
                                    larut

c.
Pembentukan senyawa kompleks
Contoh: kelarutan AgCl(s) dalam NH4OH > daripada AgCl dalam air.
AgCl(s) + NH4OH(aq)   Ag(NH3)2Cl(aq) + H2O(l)
                                       larut



C.  Mengendapkan Elektrolit
Untuk suatu garam AB yang sukar larut berlaku ketentuan, jika:
- [A+] x [B-] < Ksp 
larutan tak jenuh; tidak terjadi pengendapan

- [A+] x [B-] = Ksp 
larutan tepat jenuh; larutan tepat mengendap

- [A+] x [B-] > Ksp 
larutan kelewat jenuh; di sini terjadi pengendapan zat

Contoh:
Apakah terjadi pengendapan CaCO3. jika ke dalam 1 liter 0.05 M Na2CO3 ditambahkan 1 liter 0.02 M CaCl2, dan diketahui harga Ksp untuk CaCO3 adalah 10-6.
Jawab:
Na2CO3(aq)   2 Na+(aq) + CO3- (aq)
[CO32-] = 1 . 0.05 / 1+1 = 0.025 M = 2.5 x 10-2 M
CaCl2(aq)   Ca2+(aq) + 2Cl-(aq)
[Ca2+] = 1 . 0.02 / 1+1 = 0.01 = 10-2 M
maka :   [Ca2+] x [CO32-] = 2.5 x 10-2 x 10-2 = 2.5 x 10-4
karena : [Ca2+] x [CO32-] > Ksp CaCO3, maka akan terjadi endapan CaCO3

SIFAT KOLIGATIF LARUTAN

SIFAT KOLIGATIF LARUTAN

A.  Sifat Koligatif Larutan Non Elektrolit
Sifat koligatif larutan adalah sifat larutan yang tidak tergantung pada macamnya zat terlarut tetapi semata-mata hanya ditentukan oleh banyaknya zat terlarut (konsentrasi zat terlarut).
Sifat koligatif meliputi:
1. Penurunan tekanan uap jenuh
2. Kenaikan titik didih
3. Penurunan titik beku
4. Tekanan osmotik
Banyaknya partikel dalam larutan ditentukan oleh konsentrasi larutan dan sifat Larutan itu sendiri. Jumlah partikel dalam larutan non elektrolit tidak sama dengan jumlah partikel dalam larutan elektrolit, walaupun konsentrasi keduanya sama. Hal ini dikarenakan larutan elektrolit terurai menjadi ion-ionnya, sedangkan larutan non elektrolit tidak terurai menjadi ion-ion. Dengan demikian sifat koligatif larutan dibedakan atas sifat koligatif larutan non elektrolit dan sifat koligatif larutan elektrolit.

B.  Penurunan Tekanan Uap Jenuh Dan Kenaikan Titik Didih
PENURUNAN TEKANAN UAP JENUH
Pada setiap suhu, zat cair selalu mempunyai tekanan tertentu. Tekanan ini adalah tekanan uap jenuhnya pada suhu tertentu. Penambahan suatu zat ke dalam zat cair menyebabkan penurunan tekanan uapnya. Hal ini disebabkan karena zat terlarut itu mengurangi bagian atau fraksi dari pelarut, sehingga kecepatan penguapanberkurang.
Menurut RAOULT:
p = po . XB
dimana:
p = tekanan uap jenuh larutan
po = tekanan uap jenuh pelarut murni
XB = fraksi mol pelarut
Karena XA + XB = 1, maka persamaan di atas dapat diperluas menjadi:
P = Po (1 - XA)
P = Po - Po . XA
Po - P = Po . XA
sehingga:
P = po . XA
dimana:

P = penunman tekanan uap jenuh pelarut
po = tekanan uap pelarut murni
XA = fraksi mol zat terlarut
Contoh:
Hitunglah penurunan tekanan uap jenuh air, bila 45 gram glukosa (Mr = 180) dilarutkan dalam 90 gram air !
Diketahui tekanan uap jenuh air murni pada 20oC adalah 18 mmHg.
Jawab:
mol glukosa = 45/180 = 0.25 mol
mol air = 90/18 = 5 mol
fraksi mol glukosa = 0.25/(0.25 + 5) = 0.048
Penurunan tekanan uap jenuh air:

P = Po. XA = 18 x 0.048 = 0.864 mmHg

KENAIKAN TITIK DIDIH
Adanya penurunan tekanan uap jenuh mengakibatkan titik didih larutan lebih tinggi dari titik didih pelarut murni.
Untuk larutan non elektrolit kenaikan titik didih dinyatakan dengan:
Tb = m . Kb
dimana:
Tb = kenaikan titik didih (oC)
m = molalitas larutan
Kb = tetapan kenaikan titik didih molal
Karena : m = (W/Mr) . (1000/p) ; (W menyatakan massa zat terlarut)
Maka kenaikan titik didih larutan dapat dinyatakan sebagai:
Tb = (W/Mr) . (1000/p) . Kb
Apabila pelarutnya air dan tekanan udara 1 atm, maka titik didih larutan dinyatakan sebagai:
Tb = (100 + Tb)oC
C.  Penurunan Titik Beku Dan Tekanan Osmotik
PENURUNAN TITIK BEKU
Untuk penurunan titik beku persamaannya dinyatakan sebagai :
Tf = m . Kf = W/Mr . 1000/p . Kf
dimana:
Tf = penurunan titik beku
m = molalitas larutan
Kf = tetapan penurunan titik beku molal
W = massa zat terlarut
Mr = massa molekul relatif zat terlarut
p = massa pelarut
Apabila pelarutnya air dan tekanan udara 1 atm, maka titik beku larutannya dinyatakan sebagai:
Tf = (O - Tf)oC

TEKANAN OSMOTIK

Tekanan osmotik adalah tekanan yang diberikan pada larutan yang dapat menghentikan perpindahan molekul-molekul pelarut ke dalam larutan melalui membran semi permeabel (proses osmosis).
Menurut VAN'T HOFF tekanan osmotik mengikuti hukum gas ideal:
PV = nRT
Karena tekanan osmotik =  , maka :
= n/V R T = C R T
dimana :
= tekanan osmotik (atmosfir)
C = konsentrasi larutan (mol/liter= M)
R = tetapan gas universal = 0.082 liter.atm/moloK
T = suhu mutlak (oK)
- Larutan yang mempunyai tekanan osmotik lebih rendah dari yang lain
  disebut larutan Hipotonis.
- Larutan yang mempunyai tekanan osmotik lebih tinggi dari yang lain
  disebut larutan Hipertonis.
- Larutan-larutan yang mempunyai tekanan osmotik sama disebut
   Isotonis.
D.  Sifat Koligatif Larutan Elektrolit
Seperti yang telah dijelaskan sebelumnya bahwa larutan elektrolit di dalam pelarutnya mempunyai kemampuan untuk mengion. Hal ini mengakibatkan larutan elektrolit mempunyai jumlah partikel yang lebih banyak daripada larutan non elektrolit pada konsentrasi yang sama
Contoh:
Larutan 0.5 molal glukosa dibandingkan dengan iarutan 0.5 molal garam dapur.
- Untuk larutan glukosa dalam air jumlah partikel (konsentrasinya) tetap, yaitu 0.5 molal.
- Untuk larutan garam dapur: NaCl(aq) --> Na+ (aq) + Cl- (aq) karena terurai menjadi 2 ion, maka konsentrasi partikelnya menjadi 2 kali semula = 1.0 molal.
Yang menjadi ukuran langsung dari keadaan (kemampuannya) untuk mengion adalah derajat ionisasi.
Besarnya derajat ionisasi ini dinyatakan sebagai:
= jumlah mol zat yang terionisasi/jumlah mol zat mula-mula
Untuk larutan elektrolit kuat, harga derajat ionisasinya mendekati 1, sedangkan untuk elektrolit lemah, harganya berada di antara 0 dan 1 (0 <  < 1).
Atas dasar kemampuan ini, maka larutan elektrolit mempunyai pengembangan di dalam perumusan sifat koligatifnya.
1. Untuk Kenaikan Titik Didih dinyatakan sebagai:
Tb = m . Kb [1 + (n-1)] = W/Mr . 1000/p . Kb [1+ (n-1)]
n menyatakan jumlah ion dari larutan elektrolitnya.
2. Untuk Penurunan Titik Beku dinyatakan sebagai:
Tf = m . Kf [1 + (n-1)] = W/Mr . 1000/p . Kf [1+ (n-1)]
3. Untuk Tekanan Osmotik dinyatakan sebagai:
= C R T [1+ (n-1)]
Contoh:
Hitunglah kenaikan titik didih dan penurunan titik beku dari larutan 5.85 gram garam dapur (Mr = 58.5) dalam 250 gram air ! (bagi air, Kb= 0.52 dan Kf= 1.86)
Jawab:
Larutan garam dapur, NaCl(aq) --> NaF+ (aq) + Cl- (aq)
Jumlah ion = n = 2.
Tb = 5.85/58.5 x 1000/250 x 0.52 [1+1(2-1)] = 0.208 x 2 = 0.416oC
Tf = 5.85/58.5 x 1000/250 x 0.86 [1+1(2-1)] = 0.744 x 2 = 1.488oC
Catatan:
Jika di dalam soal tidak diberi keterangan mengenai harga derajat ionisasi, tetapi kita mengetahui bahwa larutannya tergolong elektrolit kuat, maka harga derajat ionisasinya dianggap 1.

KIMIA TERAPAN DAN TERPAKAI

KIMIA TERAPAN DAN TERPAKAI

DEFINISI
Bagian dari ilmu kimia yang mempelajari reaksi-reaksi kimia yang dapat dimanfaatkan dalam proses industri untuk mengolah bahan asal menjadi bahan jadi atau bahan setengah jadi.
A.  Sabun
1. PENGERTIAN
Garam dari asam lemak dengan KOH/NaOH
 2. JENIS
O

Lunak : R  C  OK
O

Keras : R  C  ONa
 3. SIFAT
1. Mengandung alkali bebas  kualitas rendah
2. Dalam H2koloid
3. Dalam air sadah  kurang membuih
4.  PEMBUATAN
Lemak / Minyak + NaOH / KOH

B.  Detergen
1. PENGERTIAN
Garam Natrium dari Asam Sulfonat
2. SIFAT
Fisis
- Ujung non polar : R - O (hidrofob)
- Ujung polar : SO3Na (hidrofil)
Terhadap JASAD RENIK
- Rantai C-nya lurus : Biogradable
- Rantai C-nya bercabang : Unbiogradable
Kimiawi
- Dapat melarutkan lemak
- Tak dipengaruhi kesadahan air
3.  PEMBUATAN
ROH + H2SO4  ROSO3H + H2O
ROSO3H + NaOH  ROSO3Na + H2O

Bensin
1.  KOMPOSISI
- Iso oktan (= 2, 2, 4 - trimetil pentana)
- n heptan (menimbulkan knocking)
2.  BILANGAN OKTAN
Kadar iso oktan dalam bensin
3. KOMERSIAL
- Premium  bilangan oktan + 80
- Premix  bilangan oktan + 94
4. SENYAWA ANTI KNOCKING
Tetra etil lead (C2H5)4Pb
5. BENSIN CRACKING
Diperoleh melalui proses pemutusan Hidrokarbon
C12H26 > C6H14 + C6H12
           425 C 25 atm

Pupuk
JENIS PUPUK
1.
Pupuk Alam
- Kompos
- Pupuk Hijau
- Pupuk Kandang


2.
Pupuk Buatan
a.
Pupuk Nitrogen
- Za = (NH4)2SO4
- A.S.N = Amonium Sulfat Nitrat
- Urea = CO(NH2)2

b.
Pupuk Kalium  N.P.K

c.
Pupuk Pospor
- Enkel Superpospat
- Double Superpospat
- Triple Superpospat



Catatan :
Fungsi Pupuk : Mensuplai kebutuhan akan unsur-unsur tertentu
Air
H2O  merupakan pelarut universal
1.
Menurut Tempatnya
a. Air Tanah
b. Air Permukaan  Sungai
c. Air Hujan

2.
Menurut Kandungan Mineral
a.
Air Murni

b.
Air Tak Murni
- Air Minum
- Air mineral  Air Pelikan dan Air Sadah





Kesadahan
Air Sadah  mengandung Ca2+ dan Mg2+
1.
Jenis
a. Tetap  bila anionnya SO42- / Cl-
....pelunakannya diberi Na2CO3
b. Sementara  bila anionnya HCO3-
....pengendapannya  Dipanaskan dan Diberi Kapur

2.
Dampak
a. Memboroskan

b.Sabun Menimbulkan Baru Ginjal

c.Menimbulkan Kerak Pada Dasar Ketel



Zat Tambahan Pada Makanan
Zat-zat makanan yang diperlukan tubuh adalah

- karbohidrat
- lemak
- protein
- vitamin
- mineral
- air

Tetapi, selain zat-zat makanan tersebut di atas, di dalam makanan kita masih terdapat zat-zat lain yang pada umumnya tidak mempunyai nilai gizi.
Zat-zat ini disebut zat tambahan (additives) pada makanan, yaitu :
1.
Zat tambahan untuk membuat makanan menjadi lebih menarik kelihatannya, lebih sedap bau dan rasanya dan lebih awet bila disimpan.

2.
Zat tambahan yang bercampur dengan makanan pada waktu dalam proses penyediaan/pembuatan bahan makanan.

Zat tambahan im harus aman penggunaannya, yaitu tidak mengganggu kesehatan.

URAIAN BEBERAPA ZAT TAMBAHAN
1.
Zat warna: tujuan penambahan ialah membuat makanan lebih menarik.

Ada 2 macam zat warna:
a. Zat Warna Nabati,
yaitu yang berasal dari alam/tumbuh-tumbuhan. seperti warna hijau dari daun suji (daun pandan) dan warna kuning atau jingga dari kunir (kurkuma).

b. Zat Warna Sintetik,
yang umumnya dibuat dari ter batubara
Zat warna ini tidak boleh digunakan untuk makanan, karena beracun. Penelitian menunjukkan bahwa beberapa zat warna itu dapat menimbulkan penyakit kanker.




2.
Zat Penyedap (penguat rasa) : Tujuan penambahan ialah agar makanan lebih sedap rasa dan baunya.


3.
Zat Pengawet
Penggunaan gula dan garam sebagai pengawet sudah diketahui orang banyak.
Untuk makanan dalam kaleng umumnya digunakan zat pengawet lain, misalnya natrium benzoat. nipagin, sendawa dan asam sitrat. Ada kalanya digunakan juga antibiotik.
Minyak dan lemak jika tidak disimpan baik, lama kelamaan menjadi tengik. Peristiwa ini terjadi karena asam lemak
yang tidak jenuh dalam bahan ini teroksidasi.
Udara, cahaya dan kerja bakteri adalah penyebabnya. Untuk mencegah proses ini pada minyak atau lemak ditambahkan zat pengawet yang tergolong "antioksidan".
Contohnya:
- butil hidroksi anisol (BHA)
- butil hidroksi toluena (BHT)
Biasanya antioksidan digunakan bersama dengan asam sitrat atau asam askorbat (vitamin C) yang fungsinya untuk memperkuat kerja antioksidan itu.
Zat tambahan golongan lainnya yang secara tidak sengaja bercampur dengan makanan ialah bahan-bahan kimia yang digunakan dalam bidang pertanian dan peternakan, misalnya senyawa organoklor.
Karena itu kita harus mencuci bersih lebih dahulu sayuran dan buah-buahan yang akan kita makan untuk mencegah
keracunan oleh bahan kimia itu. Hormon-hormon yang sekarang sering diberikan kepada hewan potong untuk
mempercepat pertumbuhannya dapat juga merupakan zat pada makanan yang tidak kita kehendaki.


4.
Zat Pemanis
Gula Pasir dan gula jawa adalah pemanis alami yang sering dipakai sehari-hari. Pemanis sintetis sering digunakan dalam industri minuman seperti limun, sirup dan lain-lain. Penggunaan pemanis sintetis ini harus dibatasi karena kelebihan pemanis sintetis dalam minuman atau makanan akan menyebabkan penyakit.
Pemanis sintetis yang aman penggunaannya adalah gula stevita yaitu gula yang berasal dari daun Stevita rebaudina.


H.  Kertas
Bahan baku yang digunakan untuk membuat kertas ialah bahan-bahan yang mengandung banyak selulosa, seperti bambu, kayu, jerami, merang, dan lain-lain.
Pembuatan kertas dari bahan baku dapat dibagi menjadi dua tahap, yaitu:
1. Pembuatan pulp
2. Pembuatan kertas dari pulp
Pulp, di samping dapat digunakan untuk membuat kertas, dapat juga digunakan untuk membuat rayon (rayon adalah selulosa dalam bentuk serat-serat).
Ada 3 macam proses pembuatan pulp, yaitu:
1. Proses mekanis
2. Proses semi-kimia
3. Proses kimia
Pada proses mekanis
tidak digunakan bahan-bahan kimia. Bahan baku digiling dengan mesin sehingga selulosa terpisah dari zat-zat lain.


Pada proses semi-kimia
dilakukan seperti proses mekanis, tetapi dibantu dengan bahan kimia untuk lebih melunakkan, sehingga serat-serat selulosa mudah terpisah dan tidak rusak.


Pada proses kimia
bahan baku dimasak dengan bahan kimia tertentu untuk mengllilangkan zat lain yang tidak perlu dari serat-serat selulosa. Dengan proses ini, dapat diperoleh selulosa yang murni dan tidak rusak.


Ada 2 metoda pembuatan pulp dengan proses kimia, yaitu:
a.
Metoda proses basa

Termasuk di sini adalah:
- proses soda
- proses sulfat


b.
Metoda proses asam

Yang termasuk proses asam adalah proses sulfit


Proses Basa

Bahan baku yang telah dipotong kecil-kecil dengan mesin pemotong, dimasukkan dalam sebuah bejana yang disebut "digester."
Dalam larutan tersebut dimasukkan larutan pemasak:
- NaOH 7%, untuk proses soda
- NaOH, Na2S dan Na2CO3 untuk proses sulfat
Pemasakan ini berguna untuk memisahkan selulosa dari zat-zat yang lain.
Reaksi sebenarnya rumit sekali, tetapi secara sederhana dapat ditulis:
       Larutan pemasak
Kayu > pulp (selulosa) + senyawa-senyawa alkohol + senyawa-senyawa asam + merkaptan + zat-zat pengotor lainnya.
Kemudian campuran yang selesai dimasak tersebut dimasukkan ke dalam mesin pemisah pulp dan disaring. Pulp kasar dapat digunakan untuk membuat karton dan pulp halus yang warnanya masih coklat harus dikelantang (diputihkan/dipucatkan). Pemucatan dilakukan dengan menggunakan Kaporit atau Natrium hipoklorit. Perlu diperhatikan bahwa, bahan-bahan kimia yang sudah terpakai tidak dibuang, tetapi diolah kembali untuk dipakai lagi. Hal ini berarti menghemat biaya dan mencegah pencemaran lingkungan
Reaksi kimia yang penting dalam pengolahan kembali sisa larutan tersebut adalah :
Na2SO4 + 2 C > Na2S + 2 CO2
Na2CO3 + Ca(OH)2 > 2 NaOH + CaCO3
Proses Asam
Secara garis besar, proses sulfit dilakukan melalui tahap-tahap yang sama dengan proses basa. tetapi larutan yang digunakan adalah:
SO2, Ca(HSO3)2 dan Mg(HS03)2
Pembuatan Kertas

Pulp yang sudah siap, diolah dengan bahan-bahan penolong seperti perekat damar, kaolin, talk, gips, kalsium karbonat, tawas aluminium, kertas bekas, zat warna dan lain-lain, untuk kemudian diproses menjadi kertas, melalui mesin pembentuk lembaran kertas, mesin pengeras dan mesin pengering.
Catatan:
Zat-zat tersebut di atas dipakai dalam jumlah kecil sekali, dan bila berlebihan berbahaya bagi kesehatan.
Ada zat pemanis yang dapat menimbulkan kanker pada hewan-hewan percobaan, sehingga di beberapa negara dilarang.
Umumnya zat-zat tersebut di atas adalah sintetis.